5@@\

POWERSOFT
ENTERPRISE,
SERIES

Watcom SQL

VERSION 4.0

Copyright © 1988-1994 by Watcom International Corporation.
All rights reserved.
First printed and distributed in the United States of America.

Information in this manual may change without notice and does not represent a commitment on
the part of Powersoft Corporation.

The software described in this manual is provided by Powersoft Corporation under a Powersoft
License agreement. The software may be used only in accordance with the terms of the agreement.

Powersoft Corporation ("Powersoft") claims copyright in this program and documentation as an
unpublished work, revisions of which were first licensed on the date indicated in the foregoing
notice. Claim of copyright does not imply waiver of Powersoft's other rights.

This program and documentation are confidential trade secrets and the property of Powersoft. Use,
examination, reproduction, copying, decompilation, transfer, and/or disclosure to others are strictly
prohibited except by express written agreement with Powersoft.

PowerBuilder, Powersoft, and SQL Smart are registered trademarks, and InfoMaker, Powersoft
Enterprise Series, PowerMaker, PowerSQL, PowerViewer, and CODE are trademarks of
Powersoft Corporation. DataWindow is a proprietary technology of Powersoft Corporation (U.S.
patent pending).

1-2-3 is a registered trademark of Lotus Development Corporation. 386 is a trademark of Intel
Corporation. ALLBASE/SQL and IMAGE/SQL are trademarks of Hewlett-Packard Company.
AT&T Global Information Solutions and TOP END are registered trademarks of AT&T.
CICS/MVS, DB2, DB2/2, DRDA, IMS, PC-DOS, and PL/1 are trademarks of International
Business Machines Corporation. CompuServe is a registered trademark of CompuServe, Inc. DB-
Library, Net-Gateway, SQL Server, and System 10 are trademarks of Sybase Corporation.
dBASE is a registered trademark of Borland International, Inc. Graphics Server is a trademark of
Bits Per Second Ltd. DEC and Rdb are trademarks of Digital Equipment Corporation. FoxPro,
Microsoft, Microsoft Access, MS-DOS, and Multiplan are registered trademarks, and Windows
and Windows NT are trademarks of Microsoft Corporation. INFORMIX is a registered trademark
of Informix Software, Inc. INTERSOLYV, PVCS, and Q+E are registered trademarks of
INTERSOLY, Inc. ORACLE is a registered trademark of Oracle Corporation. PaintBrush is a
trademark of Zsoft Corporation. PC/SQL-link is a registered trademark, and Database Gateway is
a trademark of Micro Decisionware, Inc. Paradox is a registered trademark of Borland
International, Inc. SQLBase is a registered trademark of Gupta Corporation. Watcom is
registered trademark of Watcom International Corporation. XDB is a registered trademark of
XDB Systems.

December 1994

Subject

Audience

About This Manual

This manual introduces Watcom SQL and provides information about using
Watcom SQL with PowerBuilder and InfoMaker.

It also contains:

Information on backup and recovery

Hints on improving database performance

Description of Watcom SQL’s procedures and triggers
Program descriptions

Syntax and description of the Watcom SQL commands

® & & o o o

Descriptions of the Watcom SQL system tables
This manual is for users who will be accessing Watcom SQL databases from

PowerBuilder or InfoMaker. It assumes the reader is familiar with Microsoft
Windows 3.x and with basic SQL concepts and syntax.

Contents

About This Manual

1 Introduction

2 Database Design

3 Watcom SQL Architecture
Single-user
Multi-user

4 Using ODBC

5 Using ISQL

Features
Benefits ..o

Planning the database
The design
Basic terminology .

The design process ...

Step 1: identify tables and relationshipsoooveomeoov
Step 2: identify the required data ...
Step 3: normalize the dataocccoooocovememeeov
Step 4: resolve the relationships ...
Step 5: verify the designooooccooocccmmm

Help ...,

Connecting to the database ...

Database structure

ABAhOON-=

oo oL,

11

19
21
22

25
26
28

31
32
33
35
35

37
38
38
39
40
41

Contents

WOPKING With ISQL ...covvveusseeemsmsimmsssssssssssrssssssimsss s 42

ENLEriNG COMMANGS ..oovevvsseemussssnmmsssssssssssssssimssssssssssssss s sseeses 42

DiSPIAYING GALA ..oouurrirrererereemsssssnsssssssssssesensss s 42

Scrolling the data WINAOW ... 43

COMMANG FECAIL ..everereeeecuirirers e 44

FUNCHON KEYS .vvvoeveeeeuurmiesissmsssersssasssms st 46

ADOMING @ COMMENG .oooooreriiusncimssmrssssssssssessss s 46

Available commands for ISQL ... 47

Using the database t00IScoumrimeruiseeumssmmmssimsssniscssmn e 48

LEAVING ISQL oereervrrvmmmmssssssssesssssssmmsssssssssssssssssmmss s 49

6 WatCOM SQL CONCEPESocovvvvvvummmsmssssmmssssssssssssssssssssssssssssss s 51
CoNNECtiNg t0 @ JAtADASEccuuvurrimirissrissirssissmssssssess s 52

NamMEd CONNECHIONScvvmceiecmrimriessseeuessisnsssssisess s cesees 52

CONNECHION PATAMETETSoooriveuscissimmmisssssessemsssssssmssm s 53

TTANSACHONS oevevevraerrereeeesesessnaessnssssssessas sttt 55

Connecting during development ... 56

Connections dUriNg EXECULIONc..cewuimiuimirmercisissnississssessencssenes 57

STV e L1 SRR 58

TWO-PRASE COMMIL .ooorrrivrssciemmssernissssnrssssniss s 59

Understanding the NULL VAIUE ... 60

Ensuring database iNtegritycoriereserisimmimmisnnssenmssssm s 61

[T AL e 111 AR S 61

Referential iINtEQILYccoeremererscurinmminisnsses e 62

7 Data Types, Functions, Expressions, and CONditionsirneenness 65
DALA LYPES eoevvverecevmsserrsssessssssesssssssssms s 66

FUNCHONS voveveeeeeeecaeeesaeassessesessssesesasssasescses i s s sttt s 71

EXPIESSIONS cvvvouvorrvmssserssssssessssssessssssssssss s s s 84

CONGIIONS erverveverreerereeesenssessess s asesssas st 90

8 SELECT COMMANM SYNTAXoooooecrirmmmimmmmssssssssssisssss s 97
Building SELECT StatemMentsccocooiiueirmssmmmnimsssmssesssssssssseeeses 98

SELECT ooveeeeeeeeesessssssssssessscssssssssssssstssess s s ssssssstsss s s sassassoscososss 99

9 LOCKING ANA CONCUITENCYcovoeverinmrnsssssssssssss s s 103

vi

Contents

CONSISIENCYoooeeeeeeeeeeeeeeeeee oo 104
1SOIAtioN 1EVelSoooooovvvveeeveeeeeeeeeeeeeeeeeeeeeeeeoeoooooooooooo 105
TYPES OF IOCKSooooueeeereeeeeeeeeeeeeeeeoe oo 106
CONCUITENCYccoooeeeveeeeemmmeeesssenssss oo 107
Transaction blockingoveveeeeeeeoommmmooooo 107
DEAAIOCKovoooeeeeeeeeeeeeeeeee e 107
Choosing an isolation level ... 109
Primary key generation ... 110
Data definition commands ..o 111
Portable cOMPUterscoooooooooovvvoooeeeceoeeoo 112
ApPlYiNg Updates ... 112
Large databases ... 112
10 Backup and Recovery ... 115
The need for backUpSceeuuuueeeveeeeeeeeeeeeeoeeoooooooooo 116
LOGS oo 117
ChecKpOINt 10Gcuueereeeerrreeeeeeeeeeeeceoeeeeeooooooo 117
ROIDACK 10G ... 118
TranSaction 10gc.ueeeeeeemeeeemeeeeeeoeeeeeeeeeeeeoeooooooooooo 118
BACKUDS ..o 120
Recovery from system failure ... 122
Recovery from media failure ... 123
Media failure on the database file ..o 123
Media failure on the transaction 10g ... 124

11 Improving Performance ..o 127
Other factors affecting performance ... 128
KBYS .o 129
INAEXES ... 130
OPtiMIZING JOINS .oooooooeeeeeeeeeeeeooooooooo 131
SOMING oo 132
How the optimizer workscccooooooomm 133
SEIf tUNING oo 133
Temporary tables ... 134
Using estimates to improve performance ... 135

vii

Contents

12 User IDs and PEerMiSSIONS ...t 137
Granting and revoking user IDs and PErMISSIONS ..oucuveeiecracisiinininenss 138
Granting NEW USEN DS ... 138
Granting permissions ON tabIES ... 138
Execute permission ON ProCEAUIEScoweruerumusimsimsmmssmssssessenseess 139
DBA and resource authority ... 139
USET GIOUPS ovverereemesersssssssssssssssesssssssssss s s s 140
Creating USET QrOUPSocwurreseeuseusscsmmnsssssssssssesssissssnsinsssssssssesscnssosss 140
GrOUP PEIMISSIONS ...ouuiuuriseesemsissmssssssssssstas s 140
GOUP tADIES ..oorreeneirrnrrinnsiseeiseess st 140

AN eXample Of USET QrOUPScccueurummmmnmsmscrssissinssnsssssssssssesseseese 141
13 VWS ooooooeeoee oo eaeeesss s s mse RS R 143
DEFINING @ VIBW ..covcourrimmniiseeisseniscemsssmss s s 144
USING VIEWS OF SECUY ouvrvvevsrrieusrimniissssissesisessssssnnssss s 146
14 Procedures and THOOEIS ... 147
Overview of procedures and trggers ... 148
AGVANTAGES .oooevrerueecimnririesissesssesssesssias s s 149
USING PrOCEAUIES ...oonvvvussreresisssissssssissssssssssssss s s 150
Creating PrOCEAUIEScovwuuevucmsrississssssesssenssssssssm s 150
Dropping @ PrOCEAUIEcccumeruesimmmmmsssssssrsssessssssmss s 151
CalliNg PrOCEAUIESocorreesserimssssnrmmssssssssssenssssanssssms e 151
Permission to execute ProCeAUIEScocoiiirimmmissrscsucscussensnsssasacs 152
SEALEMENES <.eoveeeeeeriersieeseeeeees s s 153
Compound statements in procedures and triggerseeeeeeens 153
SQL statements in procedures and triggers ... 154
ALOMIC SEALEMENTS .eviviierreeeeeceirinreese sttt 154
CoNtrol STAtEMENEScuoveveieereeecciiinteer et 155
L1100 [- £ J SRR RESRIERENIEE S 158
Creating tHGGETSoimririeremsericsssimersssss s 158
Dropping @ trQUETcoorerreerucisrrmnrississisenssss st 160
EXECUHNG tIGGEIS ..ovurumnriisniisreiersinssinnmssssssis s 160
Warnings in procedures and triggers ... 161
Errors in procedures and triggers ... 162
Without exception handIers ... 162

viii

Contents

With exception handlers ..o 163
Transactions and Savepoints ..o 165
Single row SELECToouvveeemmmmeeeeeeoeeeeeeeeeeeseeoeeoeoooooooooeoooooo 166
Cursors in procedures and triggers ... 167
Result sets from procedures ..o 170

Multiple result Setsoowwvvvueevveeeeeeeeoeeeeeeeooooooo 171

15 Database Collations ... 173
O 174
Countries, languages, and code Pages ..., 175
Form of the custom collation file ... 177

16 COMMANG SYNEAX ... 181
CONVENHONSooooeeeeeceneeeeeeeeeeeeeeee oo 182
Language elementsoo.....eoomoooveeeeommeeeooooooooo 183
ALTER DBSPACEocmmmmmmmeeeeeeeeeeeeeeeoeeseeoeoeooeooooooeoooooooo 186
ALTER TABLEccoovimveeeemmmmmmimmmeeeeeeeeeseeeeeeeeeeeooeoooooooooooooo 187
CALL oo 192
CASE .ot 193
CHECKPOINToooooeeeeeeeeeemneesessssssssssseeeeeeeeeeeeeessssseseoooooooooooooooooe 194
CLOSEeeeeeeensesesssssssssssssse e eeeeeeeeeesses oo 195
COMMENT ... 196
COMMIT e eeeeeeeeeeeeeeseeeooeooeoeooeoooeoooe 197
Compound Statementsooevvveeeoeeemmmmeecessoooooo 199
CONFIGUREoooooveeeeenennnneeeeeeeeeeeeeeeeeesseeeeeeeeeeeooooooooooo 201
= 202
CREATE DBSPAGCEccoouveeeeveveeeeoeeeeeeeeeeeeoeoeseoeooooooooooooooooo 204
CREATE INDEXocoovueeeemeeerenreeeeeeosesseeseeeeeeeeoooeeooooooooooooooooooooo 205
CREATE PROCEDURE ... 207
CREATE TABLEoocooueveeeeevnneeeeoeeeeeeeee oo 209
CREATE TRIGGERoooooeovvvvoeeeereeeeeeeeeeeeeeeeoeooooooooooooooooooooooo 217
CREATE VARIABLEooooooovvvveeeeeeeeeeeeeeeeeeeeeooooooooooooooeooooooooo 219
CREATE VIEWooooooooootteeeeeeeeeeeeeeeeeeeeeeeeeeeoeoeoooooooooo 221
DBTOOL ... 223
DECLARE CURSORcooovoemoiomveeeereeeeeeeeeeeeeeeeeeoeooooooooooooooooooooooooo 227
DECLARE TEMPORARY TABLEoovvoeeoeeoeooooooooo 230

Contents

DELETE oo eeeee e sassassessesesseaessas s a s st 231
DELETE (POSIIONEA) «..ocovvnrmunriseriseenseissmaninsisssssssissess s 232
DISCONNEGCT ..ot verteeeseeesessasasss st sa s s ases 233
DROP oot e e s s et 234
DROP OPTIMIZER STATISTICS ..o 235
DROP VARIABLE ...ttt snsaes 236
= 4 1 T U U U OO OO RO PS PP RIS 237
FETCOH oot sesasasss e esebeseasbs s s bbb bbb s bR sttt s 238
FOR oo evetes s esee e s s s s s st b s R AR R AR 241
FROM oot eeeee s s s s s sesebesseas s s sttt 243
GRANT oot e s aese s s a b a s 249
HELP COMMEANT <.ervoveeeerereieseeeeeeeeeeesisemsssssssstsisnsssssssssmssssssssssssasssasasesaes 253
IF SEATEMENL «eoveeeeeeeeeeeeeererereeseeetcsesesebss s s s cas st s as 254
INPUT oot eeees e s s s s esasa s s s st s s e s e s e b e b st s s s e s bbb st 255
INSERT oot eeeeeeseesessessessesesesssss s st st 259
LEAVE ooooeeeeeeeeeeeeeeeeesesesessesessesessssnesensnesaseseesssssasananassssasas e 261
LOOP oo s ae s 262
NULL VAIUE eveeeeeeeeeevieraesesseseseeessesesessnssssssssssasstssssssssssstassssssssssssssssnss 263
OPEN oottt s e s s e b sasa e bRt 265
OUTPUT et saese et 267
PARAMETERS ...oooeeiieeiesiesesesscisissssasasssss s s s 270
PREPARE TO COMMIT ..ottt sasases 271
READ oottt sas s s s st st a s 272
RELEASE SAVEPOINT ..ottt cacsssasnsaes 274
RESIGINAL .voveeeeeeeeeeeeeeeraeseseesceesesas s sttt 275
BESUME oottt sesssssssisssestsssaeses s as st sass sttt s 276
REVOKE oot eeeeeetesaeassaessssesesess s sas st st 277
ROLLBAGCK oot ieeaesesesssssssssessssassesesssssssstsmsssssssssmssassssssssucusasusasassss 279
ROLLBACK TO SAVEPOINT ..ottt 280
SAVEPOINT oo tsieseseecseescssasaessssss s ss s s sass s s s s ssns 281
SET CONNECTION ..ottt sttt 282
SET OPTION oot tetesiesseseeseacasssas s ssess st s st 283
SET VAMADIE .eeeeeeeeceeeeeeteisteeeeieieeereaesiesesesstse st 298
SIGNAL oot eeeaeas s sesiseeeasasaasas s s 299
UNION oot eeeesee s s sssse s sscsessasae s bbbttt 300
UPDATE oot ses e ssssesseseescssasasas st s 302

Contents

UPDATE (POSIHION€)ovouorrveeeeeeeeeeeeeeeeeeeseoeoeoeoeoooeoooooooooo 304

VALIDATE TABLEooseeeeeeeeememmeeeeeeeeeeeoeeeeeeoeeeeeeoeoooeoeoooeooooooo 305

17 Program SUMMArY ... 307
DBBACKUPooooeeemteeeeneeseseeaesseeeeeeeeeoese oo 308

O O 311

DBERASEoooeeeeeeessseeeeeeeeeeeeeeeeeeeeeeeeseeeee oo 313

DBEXPANDoooooeeeeesseeseeeneeeeeeeeeeeeeeeeeoesees oo oo 314

DBINFO ..ooovtmieeeeeessssseeee oo 315

DBINIT .ot eeeeenmsssseeee oo eeeeeeesssee oo oeoeoeeeeeee oo 317

DBLOG ..coootiiitceeeeeemsssseseeeeeeeeese e oo 322

DBSHRINK ... 323

DBSTART .ooorioeeeereseseeeseeseeesseeeeeeeeeeoesee oo 324

DBSTOP ..coovoittieeveeeesemmmmssseeseceeeeeeseeseeeeeeeesseeeee oo oeooeoooeoeeeeeeoo 330

DBTRAN w....ooteeeceeeesesseeeeeeeseeeeeeeese e 331

DBUNLOADooooeresetseeneeseeeeeeeseeeeeeeeoese oo 333

DBUPGRAD ..o 336

A S 338

L L O 339

ISQL oottt 341

Environment variables ..o 346

Software component return codes ..o 349

A Watcom SQL Fe@turesoeooooooeoocesoesooooooooo 351
Differences from other SQLScccoeoeeeemeeeommooooo 352

B LIMItAtioNSoocccooooioeeeeeeeeeeeoeeeeoooooooooo 355
C Database Error Messages ... 357
Alphabetic by error message ... 358

Alphabetic by SQLSTATEvvveeeeeeeeeeeeeeeeeeeoeoeoeoooooooooo 363

Error message descriptions ... 368

WAIMINGS ..ot 368

Environment errorsooooovvoeeoeoovoooeo 370

CONNECHON @ITOFScooervvrereeeeeeeee oo 374

Creation ©fTOrSccceemmmmvvvvveereeeeeeeeeeooseeeeeeeooeeooeoeoeooooeooooooo 377

Contents

PEIMNISSION EITOIS ..eouvuieirieceeeeeeisaesissssssssststss ettt st sesasaees 381
PrEPAIE EITOISoouermunressserssserssssssse s ssss st 382
SEMANTIC EITOIS .eevveveeeeecerereseseseressss ettt sttt ses 383
Expression and function erTors ... 388
DESCHDE BITOIS .veeeeiveveerereeeeeieeeneieseenesssssstesessast s bssss st s tnsssnsns 389
OPEN EITOFS .eceereimirrssssssseessesesssass s 390
FEICR ©ITOIS .vveeeeeeeeereueeeeseesseesesenessasssasses s et s sttt 390
Update and iNSEr ITOIS ... 392
VALADIE EITOTS .oeeeeeeeeeiereeeereeeseteeessesses s ees st b s aa st snsnees 396
PrOCEAUIE EITOIS ..vvevevererraessieressistssesesaassesessesssasssssasasasssssssasssanens 396
OPHON EITOTS ..oovvvrnerissnisserissesss s 399
CONCUITENCY EITOIS ...ouvuiuriruesssescsessessasinsasssssssss st 400
SAVEPOINT BITOTS ...ourviiusriseriseriserseassissimsssssssss s 401
Version Checking EITOISciireieisecsiniinssssissss s 402
BACKUD EITOIS .uceeuiunrurrimsissssseesssisessssssas st s 403
MiISCEIIANEOUS EITOIS ...eoveveeeveeererisreneressssesessesssassussessass s s sasnsases 404
USET INTEITUPHION ereeeeniariiriiniinesees st 405
Errors that cause a rollDacKc.ccoeiemneicneiniiceiie 405
Errors specCific 10 WSQL HLI ..o 407
Internal errors (assertion failed) ... 409

D Watcom SQL KEYWOIAS ..o 411
E Watcom SQL System Tables ... 413
SYS.SYSUSERPERMoooiieiciriciciniinsisssiesciessissnssssssss s cssasasassnsass 415
SYS.SYSGROUP ...ttt 417
SYS.SYSFILE ooeeiiteeeterreeeeeeseeseseresss s st s 418
SYS.SYSTABLE ..ottt s 419
SYS.SYSDOMAIN ..ottt 421
SYS.SYSCOLUMN ..ottt st ses 422
SYS.SYSINDEX ...oiiverereriereeeeieseassesssenssssssssesesessasasassisssssasacasasssssasasass 424
SYS.SYSIXCOL .ooieiiieeerereeireeieeeessaeseseisssssies et sassss s cncsasasnenss 426
SYS.SYSFOREIGNKEYoeriircciirenrininnsieiesencisninsnsssssss s 427
SYS.SYSFKCOOL ..ttt s 429
SYS.SYSTABLEPERMoooeiecieneiiiinnieieieisisieienessissisnsssnssssss s 430
SYS.SYSCOLPERM ...ttt sttt snsasnsnsaes 433

xii

Contents

SYS.SYSOPTION ...ttt 434
SYS.SYSINFO ..ottt 435
SYS.SYSCOLLATE ..o 437
SYS.DUMMY ...t 438
SYS.SYSPROCEDURE ... 439
SYS.SYSTRIGGER ..o 440
SYS.SYSPROCPARMoovoeeeeeeeeeeeeeeeeeeeeeeoeeeoeoeeoeeoeoeoo 442
SYS.SYSPROCPERMoooeeeeeeeeeecoeeeeeeeeeeeeeeeoeeeoeoeoeoeoeoeoeoeeoeooo 444
F Watcom SQL System Views ... 445
SYS.SYSCATALOG ..o 446
SYS.SYSCOLUMNS ... 447
SYS.SYSVIEWS ... 448
SYS.SYSINDEXES ..o 449
SYS.SYSFOREIGNKEYS ..o 450
SYS.SYSUSERAUTH ..ot 451
SYS.SYSUSERPERMS ... 452
SYS.SYSUSERLIST ..ot 453
SYS.SYSGROUPS ... 454
SYS.SYSTABAUTH ..ot 455
SYS.SYSCOLAUTH .ot 456
SYS.SYSOPTIONS ..o 457
SYS.SYSUSEROPTIONS ... 458
SYS.SYSTRIGGERS ..o 459
SYS.SYSPROCPARMS ..o 460
SYS.SYSPROCAUTH ..ot 461

xiii

CHAPTER 1

Introduction

About this chapter This chapter introduces Watcom SQL, outlining its features and benefits.

Contents ¢ "Overview" on page 2

¢ "Features" on page 3
pag

¢ "Benefits" on page 4

Overview

Overview

Watcom SQL is a complete relational database system that runs under
Windows on your PC. Watcom SQL conforms to the ANSI SQLB89 standard
but has many additional features defined in the IBM DB2 and SAA
specification and in ANSI SQL92.

Chapter 1

Introduction

Features

Among the Watcom SQL features are:

Primary and foreign key support
Security to restrict access to your data
Backup and recovery using logs
Integrity checking

Automatic row-level locking

Stored procedures and triggers

Blob support

® & 6 ¢ 6 o o o

32-bit processing

In addition, Watcom SQL is easy to install and tunes itself.

Benefits

Benefits

Since Watcom SQL runs on your PC, you can easily work with the same data
at home, on your laptop, and in the office. Watcom SQL is available as a
single-user local database, as in this package, or as a network server. And
the single-user applications you develop can be deployed without a
deployment fee.

PowerBuilder and InfoMaker

PowerBuilder and InfoMaker access and manipulate data in Watcom SQL
databases through the ODBC interface. If you choose the default installation
of PowerBuilder or InfoMaker you will be connected to a Watcom database.

From within PowerBuilder or InfoMaker applications, you can create and
maintain databases; create, drop, and update tables; alter the table definition;
and create, update, and drop views. In addition, you can retrieve data from
the database, modify it, and then update the database with your changes.

To do all this from within PowerBuilder or InfoMaker, you just make
selections in the painters. PowerBuilder and InfoMaker use your selections
to generate the required SQL statements (commands) and then submit them
to Watcom SQL for execution.

In PowerBuilder, you can also create scripts that have embedded SQL to
access and manipulate data in the database. You can use the Database
Administration painter (DBA notepad) to execute SQL commands
immediately.

CHAPTER 2
Database Design

About this chapter Watcom SQL is a relational database system.

Before you begin to design your database, you should have some
understanding of relational database concepts. This chapter briefly describes
these concepts.

Before you begin If you are not familiar with relational databases, you may wish to consult an
introductory book such as A Database Primer by C. J. Date. If you are
interested in database theory, C. J. Date’s An Introduction to Database
Systems (fourth edition) is an excellent textbook on the subject.

Contents ¢ "Planning the database" on page 6

¢ "The design process" on page 8

Planning the database

Planning the database

The design

The most important consideration in designing your database is how the
information will be used. The various applications and procedures that will
use the database introduce requirements upon the structure of the data.

In a relational database, you represent the data and data relationships as a
collection of tables. Each table has one or more columns.

The first step in creating a database is designing it: you plan what tables you
require and what data they will contain. You also determine how the tables
are related. This is a very important step and deserves careful consideration.

You must determine what things you want to store information about
(entities) and how these things are related (relationships). A useful technique
in designing your database is to draw a picture of your tables as shown later
in this chapter. This graphical display of a database is called an
Entity-Relationship (E-R) diagram. Usually, each box in an E-R diagram
corresponds to a table in a relational database, and each line from the
diagram corresponds to a foreign key.

The data you need in order to create a good database design comes from the:

¢ Business activities you will use the database to perform

¢ Business rules that apply to these activities

¢ Data you want to maintain in the database

When you complete your database design, you will have a diagram of your

database. The diagram, along with the business activities and rules, provides
all the information you need to implement the database.

Basic terminology

This table lists some of the relational database terms and their equivalent in
other nonrelational databases:

Chapter 2 Database Design

Formal Informal Equivalent
relational term relational term nonrelational term
Relation Table File

Attribute Column Field

Tuple Row Record

Tables Database tables are sometimes called entities. They are the
database equivalent of nouns:

¢ People, places, things
¢ Events, activities
For example, in keeping track of information about employees, the subject is

employees, and employees becomes a table.

A table contains information on a particular topic and is made up of columns
and rows. A column is named and contains related information. Each row in
the table has one value in each column in the table. Rows are not named.

Relationships A relationship is the database equivalent of a verb. For

example, an employee is associated with a department. Tables can be
related to one another in three ways:

¢ One-to-many

1 M
Department [P Employees

¢ One-to-one

1 1 Department

Department
P Head

¢ Many-to-many

M M
Skill P Employees

The design process

The design process

There are six major steps in the design process. The first five steps are
usually done on paper and then the final design is implemented.

1

2
3
4
5
6

Identify tables and relationships

Identify data that is needed for each table and relationship
Normalize the data

Resolve relationships

Verify the design

Implement the design using PowerBuilder or InfoMaker

Step 1: identify tables and relationships

To identify the tables and their relationship to each other:

1

Define high-level activities

Identify the general activities you will use this database for. For
example, you want to keep track of information about employees.

Identify tables

For the list of activities, identify the subject areas you need to maintain
information about. These will become tables. For example, hire
employees, assign to a department, and determine a skill level.

Identify relationships

Look at the activities and determine what the relationships will be
between the tables. For example, there is a relationship between
departments and employees. We give this relationship a name.

Break down the activities

You started out with high-level activities. Now examine these activities
more carefully to see if some of them can be broken down into
lower-level activities. For example, a high-level activity such as
maintain employee information can be broken down into:

¢ Add new employees

Chapter 2 Database Design

Example

¢ Change existing employee information

¢ Delete terminated employees

5 Identify business rules

Look at your business description and see what rules you follow. For
example, one business rule might be that a department has only one
department head; the department head is unique.

ACME Corporation is a small company with offices in five locations.
Currently 71 employees work for ACME. The company is preparing for
rapid growth and has identified nine departments, each with its own
department head.

To help in its search for new employees, the personnel department has
identified 68 skills that it believes the company will need in its future
employee base. When an employee is hired, the employee’s level of
expertise for each skill is identified.

Some of the high-level activities for ACME Corporation are:

Hire employees

Terminate employees

Maintain personal employee information

Maintain information on skills required for the company
Maintain information on which employees have which skills

Maintain information on departments

*® & & & o oo o

Maintain information on offices

We can identify the subject areas (tables) and relationships that will hold the
information and create a diagram based on the description and high-level
activities.

We use boxes to show tables and diamonds to show relationships. At this
point we can also identify which relationships are one-to-many, one-to-one,
and many-to-many.

Right now, this is a rough E-R diagram. It will be refined throughout the
chapter.

The design process

10

Office Skill Department

Works Associated
In With

Employee

The next step is to look at each high-level activity and see if it is really made
up of one or more lower-level activities. For example, the lower-level
activities below are based on the high-level activities listed earlier:

* & & & 6 o oo o o

Add or delete an employee

Add or delete an office

List employees for a department

Add a skill

Add a skill for an employee

Identify skills for an employee

Identify an employee’s skill level for each skill

Identify all employees that have the same skill level for a particular skill

Change an employee’s skill level

Use these lower-level activities to identify any new tables or relationships.

Examine the business rules to identify where these activities impact your
database design. Business rules often identify one- to-many, one-to-one, and
many-to-many relationships.

L4

There are now five offices; expansion plans allow for a maximum of 10.

Chapter 2 Database Design

* & & o o

*

Employees can change department or office.

Each department has one department head.

Each office has a maximum of three telephone numbers.
Each telephone number has one or more extensions.

When an employee is hired, the level of expertise in each of several
skills is identified.

Each employee can have from three to 20 skills.

An employee may or may not be assigned to an office.

Step 2: identify the required data

To identify the required data:

1

Identify supporting data.

List all the data you will need to keep track of. The data that describes
the table (subject), answers the questions who, what, where, when, and
why.

Set up data for each table.
List the available data for each table as it seems appropriate right now.
Set up data for each relationship.

List the data that applies to each relationship (if any).

Identify supporting data

The supporting data you identify will become the names of the columns in
the table. For example, the data below might apply to the Employee table,
the Skill table, and the Expert in table:

11

The design process

Employee Skill Expert in

Employee ID Skill ID Skill level

Employee first name Skill name Date skill was acquired
Employee last name Description of skill

Employee department
Employee office
Employee address

If you diagram this data, your diagram will look like this:

Skill

Skill ID
Skill name
Skill description

Things to remember

12

Skill level
Date acquired

Employee

Employee ID
Employee last name
Employee first name
Employee department
Employee office
Employee address

¢ When you are identifying the supporting data, be sure to refer to the
activities you identified earlier to see how you will need to access the

data.

For example, if you know that you will need a list of all employees
sorted by last name, make sure that you specify supporting data as Last
name and First name, rather than simply Name (which would contain
both first and last names).

¢ The names you choose should be consistent. Consistency makes it easier
to maintain your database and easier to read reports and output windows.

For example, if you choose to use an abbreviated name such as
Emp_status for one piece of data, you should not use the full name
(Employee_ID) for another piece of data. Instead, the names should be
Emp_status and Emp_ID.

Chapter 2 Database Design

¢ Itis not crucial that the data be associated with the correct table. You
can use your intuition. In the next section, you’ll apply tests to check
your judgment.

Step 3: normalize the data

Normal forms

Normalization is a series of tests you use against the data to eliminate
redundancy and make sure the data is associated with the correct table or
relationship. There are five tests. In this section, we will talk about the three
tests that are usually used.

For information about the normalization test, see a book on database design.

Normal forms are the tests you usually use to normalize data. When your
data passes the first test, it is considered to be in first normal form when it
passes the second test, it is in second normal form, and when it passes the
third test, it is in third normal form.

To normalize the data:

1 List the data:

¢ Identify at least one key for each table. Each table must have a
primary key.

¢ Identify keys for relationships. The keys for a relationship are the
keys from the two tables it joins.

¢ Check for calculated data in your supporting data list. Calculated
data is not normally stored in the database.

2 Put data in first normal form:

¢ Remove repeating data from tables and relationships.

¢ Create one or more tables and relationships with the data you
remove.

3 Put data in second normal form:

¢ Identify tables and relationships with more than one key.

13

The design process

¢ Remove data that depends on only one part of the key.

¢ Create one or more tables and relationships with the data you
remove.

4 Put data in third normal form:

¢ Remove data that depends on other data in the table or relationship
and not on the key.

¢ Create one or more tables and relationships with the data you
remove.

Data and keys

Before you begin to normalize (test your data), simply list the data and
identify a unique (primary) key for each table. The key can be made up of
one piece of data (column) or several (a concatenated key).

The primary key is the set of columns that uniquely identifies rows in a table.
The primary key for the Employee table is the Employee ID column. The
primary key for the Works In relationship consists of the Office code and
Employee ID columns. Give a key to each relationship in your database by
taking the key from each of the tables it connects. In the example, the keys
identified with an asterisk are the keys for the relationship:

14

Chapter 2 Database Design

Relationship Key
Office *Office code
Office address
Phone number
Works in *Office code
*Employee ID
Department *Department ID
Department name
Heads *Department ID
*Employee ID
Assoc with *Department ID
*Employee ID
Skill *Skill ID
Skill name
Skill description
Expert in *Skill ID
*Employee ID
Skill level
Date acquired
Employee *Employee ID

Employee last name
Employee first name
Social security number
Employee street
Employee city
Employee state
Employee phone

Date of birth

15

The design process

Putting data in first normal form

¢ Remove repeating groups.

To test for first normal form, remove repeating groups and put them into
a table of their own.

In the example below, Phone number can repeat. (An office can have
more than one telephone number.) Remove the repeating group and
make a new table called Telephone. Set up a relationship called
Associated With between Telephone and Office.

Office Office

* Office code 1
_ Office address
[Phone number

* Office code
Office address

Associated
With
* Office code

* Phone number

Telephone

|
“ |
| |
| |
| M
| l
1
| |
|
\

* Phone number

16

Chapter 2 Database Design

Putting data in second normal form

¢ Remove data that does not depend on the whole key.

Look only at tables and relationships that have more than one key. To
test for second normal form, remove any data that does not depend on
the whole key (all the columns that make up the key).

In this example, the original Employee table specifies two keys. The
data, however, does not depend on the whole key; it depends only one of
those keys (Employee ID). Therefore, the Department ID, which the
data does not depend on, is moved to a table of its own called
Department, and a relationship called Assigned To is set up between
Employee and Department.

Employee Employee
* Employee ID __ * Employee ID
* Department ID Employee last name
| Department name | Employee first name

Employee last name
Employee first name

Assigned
To

* Employee ID
* Department ID

Department

* Department ID
Department name

17

The design process

Putting data in third normal form

¢ Remove data that doesn’t depend directly on the key.

To test for third normal form, remove any data that depends on other
data rather than directly on the key.

In this example, the original Employee table contains data that depends
on its key (Employee ID). However, data such as office location and
office phone depend on another piece of data, Office code. They do not
depend directly on the key, Employee ID. Remove this group of data
along with Office code, which it depends on, and make another table
called Office. Then we will create a relationship called Works In that
connects Employee with Office.

Employee Employee

* Employee ID M * Employee 1D
Employee last name Employee last name

_Employee first name Employee first name

" Office code

| Office location |

|_Office phone _

. 1
1 .
| * Employee ID !
| Office code |
| |
| ‘ |

|
| Office |
| |
\ *QOffice code |

Office location
\ _

18

Chapter 2 Database Design

Step 4: resolve the relationships

When you finish the normalization process, your design is almost complete.
All you need to do is resolve the relationships.

Resolving relationships that carry data

Some of your relationships may carry data. This situation often occurs in
many-to-many relationships.

Skill ——— Employee

* Sk?” ID * Employee ID * Employee ID
Skill name * Skill ID
Skill level

Skill ————»| Expertise ' 4—— Employee

* Skill ID * Erhpfoyee ID * Employee ID
Skill name Skill ID
Skill level

When this is the case, change the relationship to a table. The key to the new
table remains the same as it was for the relationship.

Resolving relationships that do not carry data

In order to implement relationships that do not carry data, you need to define
foreign keys. A foreign key is a column or set of columns that contains
primary key values from another table. The foreign key allows you to access
data from more than one table at one time.

There are some basic rules that help you decide where to put the keys:

19

The design process

One to many In a one-to-many relationship, the primary key in the one is
carried in the many. In this example, the foreign key goes into the Employee

table.
Office Assigned \ Employee
To
* Office code * Office code * Employee ID
* Employee ID
Office 1 Employee
* Office code * Employee ID

Office code (foreign key)

One to one In a one-to-one relationship, the foreign key can go into either
table. In this example, the foreign key (Head ID) is in the Department table.

1 1
Employee Department
* Employee ID * Employee ID * Department ID
* Department ID
1 1
Employee Department
* Employee ID * Department ID

Head ID (foreign key)

20

Chapter 2 Database Design

Many to many Ina many-to-many relationship, a new table is created with

two foreign keys. The existing tables are now related to each other through
this new table.

Skill Employee

* Skill ID * Employee ID * Employee ID
* Skill ID

Skill —P Expertise —— Employee

* Skill ID * Employee ID * Employee ID
* Skill ID

Step 5: verify the design

Before you implement your design, you need to make sure it will support
your needs. Examine the activities you identified at the start of the design
process and make sure you can access all the data the activities require:

¢ Can you find a path to get all the information you need?
¢ Does the design meet your needs?

¢ Is all the required data available?

If you can answer yes to all the questions above, you are ready to implement
your design.

21

The design process

Final design

The final design of the example will look like this:

Skill
Office Expertise Department
Telephone Employee

Step 6: implement the design

The final step is to implement this design using the PowerBuilder or
InfoMaker database painter. You will name the tables and the columns
containing the data to be stored in each table and specify data type an other
information (such as display format) for each column.

During the design process, you decided what tables you needed and what
data you wanted in each table. Now you need to select a column name for
each column of data, specify the data type and size for the column, and
decide whether you will allow NULL values and whether you want the
database to restrict the values allowed in the column.

Column name

A column name can be any set of letters, numbers, or symbols. However, if
a column name contains characters other than letters, numbers, or
underscores, or does not begin with a letter, or is a keyword (see "Watcom
SQL Keywords" on page 411), it must be enclosed in double quotation

22

Chapter 2 Database Design

marks. Whenever you use such a column name, you must enclose it in
double quotation marks,

Data type and size

The valid types of data supported by Watcom SQL are:
Integer (int, integer, smallint)

Decimal (decimal, numeric)

Floating point (float, double, real)

Character (char, varchar, long varchar)

Binary (binary, long binary)

® & ¢ ¢ o o

Date/time (date, time, and timestamp)

Int, decimal, and real are not available in PowerBuilder; you should use one
of the other synonyms for these data types.

The type of column will affect its maximum size. For example, if you
specify SMALLINT, a column can contain a maximum value of 32,767. If
you specify INTEGER, the maximum value is 2,147,483,647. In the case of
CHAR, the maximum length of a value in the column must be specified. For
a complete description of data types, see "Data types" on page 66.

NULL versus NOT NULL

Restrictions

When the column value is mandatory for a row, you define the column as
being NOT NULL. Otherwise, the column is allowed to contain the NULL
value, which represents no value. The default in SQL is to allow NULL
values; you should explicitly declare columns to be NOT NULL unless there
is a good reason to allow NULL values. For a complete description of the
NULL value and its use in comparisons, see "Conditions" on page 90 and
"NULL value" on page 263.

Although the data type of a column restricts the values allowed in that
column (for example, only numbers or only dates), you often want to further
restrict the allowed values. You can restrict the values of any column by
specifying a CHECK constraint or specifying valid extended attributes. You
can use any valid condition that could appear in a WHERE clause to restrict
the allowed values.

23

The design process

For more information

For more information about creating a database in PowerBuilder or
InfoMaker, see the PowerBuilder or InfoMaker User’s Guide.

24

CHAPTER 3

Watcom SQL Architecture

About this chapter Your copy of PowerBuilder or InfoMaker contains a single-user version of
Watcom SQL. Watcom SQL is also available in a Network Server package
for a variety of operating systems.

This chapter describes the architecture of single-user Watcom SQL, as well
as the architecture of the Watcom SQL Network Server. The latter may be of
use as you migrate your applications to a network setting.

Contents ¢ "Single-user" on page 26
¢ "Multi-user" on page 28

25

Single-user

Single-user
This is the version of Watcom SQL included in your package.

Watcom SQL is composed of several software components. There is a
database engine that runs as a separate program on the computer. This
engine does not interact directly with the user but manages and provides the
access to databases stored on disk. The application system communicates
with the database engine and presents those results to the user. Several
applications can use the database engine at the same time.

a Cient

| PowerBuilder | Other front ends | [Coprogam |
[ODBC, Embedded SQL, or WSQL HLI =

f 3

Applications

Interfaces

Server

“Watcom SQL |
database engine |

Y 3
Database

There are three application systems shown in the figure:

PowerBuilder PowerBuilder uses the ODBC interface to communicate
with Watcom SQL.

Other front ends Many other leading database front ends available today
support Watcom SQL through the ODBC or embedded SQL interface. These
include application development systems, report generators, and ad hoc
query tools.

C program There are header files and libraries that allow you to program
to the ODBC, embedded SQL or WSQL HLI interface.

26

Chapter 3 Watcom SQL Architecture

The lowest level interface to the database engine is Embedded SQL. The
ODBC interface is an alternative to Embedded SQL which allows you to use
the Microsoft standard ODBC API to access the database. The WSQL HLI
(high level interface) is a simple programming interface for use in
programming environments that will allow you to call dynamic link libraries.

27

Multi-user

Multi-user

28

Watcom SQL can also be used by multiple users, over a local area network
(LAN). In this case, the database engine runs on one computer and
PowerBuilder, front ends, or custom C programs run on client computers.
The client computers send SQL requests over the network to the database
server and the database server sends the results of the requests back to the
client. The requests are handled by two Watcom SQL components: the
Network Requestor and the Network Request Manager (see the drawing
below). For a complete description of all components in the Watcom SQL
product, see "Program Summary" on page 307.

The following packages support multi-user network access to Watcom SQL:
Watcom SQL Network Server for DOS

Watcom SQL Network Server for OS/2
Watcom SQL Network Server for NetWare

Watcom SQL Network Server for Windows NT
Watcom SQL for QNX

.
.
.
¢ Watcom SQL Network Server for Windows
¢
.
¢ Watcom SQL Network Server for QNX

Chapter 3 Watcom SQL Architecture

Applications

Client

Interfaces
side

Server
side

Watcom SQL
database engine

Database

29

Multi-user

30

CHAPTER 4

Using ODBC

About this chapter

Contents

The Open Database Connectivity (ODBC) interface, defined by Microsoft
Corporation, is a standard interface to database management systems in the
Windows and Windows NT environments. Applications such as
PowerBuilder use the ODBC interface to access a wide range of database
systems.

While PowerBuilder takes care of ODBC interface details for you, it is useful
to have an understanding of ODBC concepts.

Watcom SQL provides an ODBC Driver which conforms to the ODBC
interface, giving ODBC applications access to information in Watcom SQL
databases. This chapter describes how to set up ODBC data sources so that
ODBC-compliant applications will be able to access Watcom SQL.

¢ "Data sources" on page 32

31

Data sources

Data sources

32

ODBC requires a description of every data source (that is, database)
available. That description includes information about the Database
Management System (DBMS), the location of the database files, and other
DBMS-dependent information. When an application connects to a data
source, ODBC uses these descriptions to load appropriate programs to access
the database. These descriptions are contained in the ODBC.INI file in
Windows or the Windows NT registry. ODBC includes an Administrator
program which manages the data sources for the system. This enables users
to configure ODBC drivers into their environment, allowing applications to
connect to different data sources.

The Watcom SQL for Windows installation adds the description for the
sample database to the ODBC.INI file. The Watcom SQL for Windows NT
installation adds this information in the Windows NT registry.

Although you can add, remove and modify data source information by
directly editing the ODBC.INI file in Windows or by using the registry editor
in Windows NT, it is much easier to use the ODBC Administrator program.
The installation process installs the ODBC Administrator as one of the icons
in your Watcom SQL group. The ODBC Administrator can also be activated
through the Control Panel.

The left side of the Administrator window lists the available data sources. If
you have other ODBC software installed on your computer, you may have
other data sources available. Pressing the Drivers button will display a list of
the currently installed drivers, and allow you to install new drivers or remove
drivers.

There are three actions available: adding a new data source, removing a data
source, and modifying an existing data source.

Chapter 4 Using ODBC

Adding a data source

The ODBC driver can access both Watcom SQL database files on your hard
disk and Watcom SQL network database servers (if you have one of the
Network Server packages).

Database must exist

To add a data source for a database file, the database must already exist.
You need to create a database before using the ODBC Administrator
program to add a data source for the database.

If you want to add a new data source, press the Add button. You will be
presented with a list of the available drivers. Select the Watcom SQL driver
from the list and press the OK button. You will be presented with the
following dialog box:

Data Source Name:
Description: L

[Connection Information

User ID: L
Password: L

Server Name: |<default>

Database Alias: L

[Database Startup

Database File:

[O] Local O Network O Custom

O Microsoft Applications [Keys in SOLStatistics)

[Prevent Driver not Capable emors

The Watcom SQL ODBC Configuration dialog box contains the following
fields. These fields correspond to the connection parameters. See
"Connection parameters" on page 53 for a description of the connection
parameters and a description of the manner in which they are used to
establish a connection with a database.

Data Source Name
This should be a short name for the data source, such as Orders or Accounts
Payable.

33

Data sources

34

Description
A longer description of the data source.

User ID

(Optional) The user name to be used when connecting. If it is omitted, most
ODBC applications will prompt you for a user ID and password when
connecting to the data source.

Password

(Optional) The password for the supplied User ID. Since the password
supplied is stored in ODBC.INI, setting the password here may be a security
risk. If the password is omitted, most applications will prompt you to enter
your password when connecting to the data source.

Server Name

The name of a Watcom SQL database engine or the name of a Watcom SQL
network server. If not specified, the default local engine is used (the first
database engine started). This field corresponds to the EngineName
connection parameter.

Database Alias

If specified, this corresponds to the name of a database already running on a
Watcom SQL database engine or Watcom SQL network server. This field
corresponds to the DatabaseName connection parameter.

Database File

If specified, this contains the name of a database file—such as
C:\WSQL\SAMPLE.DB. You can use the Browse button to locate a
database file name to place in this field. This field corresponds to the
DatabaseFile connection parameter.

Local, Network, Custom

The command used to run the database software when the named database
engine or server is not already executing. You can select Local or Network,
as appropriate, if the default settings are satisfactory. Otherwise, select
Custom and enter the command including any command line parameters by
pressing the Options button.

Prevent Driver not Capable Errors
The Watcom SQL ODBC driver returns a "Driver not Capable" error code
because it does not support qualifiers. Some ODBC applications do not

Chapter 4 Using ODBC

handle this error properly. Checking this box disables this error code,
allowing these applications to work.

Modifying an existing data source

To modify an existing data source, select the data source and press the Setup
button. You can modify any of the attributes set when the data source was
added.

Removing a data source

To remove a data source, select the data source and press the Delete button.
You will be prompted to confirm the deletion.

Database file is not deleted

Removing a data source does not delete the database file. It simply deletes
the description of the data source from the ODBC.INI file or Windows NT
registry. It can be added back as described above.

35

Data sources

36

CHAPTER 5

Using ISQL

About this chapter ISQL (Interactive SQL) is an interactive interface to Watcom SQL databases.
With ISQL you can connect to a database, type SQL statements and send
them directly to the database, and launch tools for Watcom SQL databases.

This chapter introduces you to running ISQL. SQL itself is not discussed
here.

You will gain the most from this chapter if you run ISQL on your computer
as you work through this chapter.

Contents "Starting ISQL" on the next page
"Connecting to the database" on page 40
"Working with ISQL" on page 42
"Using the database tools" on page 48

"Leaving ISQL" on page 49

* & & o o

37

Starting 1ISQL

Starting ISQL

On installation, PowerBuilder and InfoMaker create a Powersoft program
group in Program Manager. This group contains an icon to lauch the
Watcom SOL database engine on a sample database (PSDemoDB), and an
icon to launch ISQL.

First launch the sample database by double clicking on the demo DB icon. A
window appears, displaying some startup information. After a few seconds,
the program automatically reduces to an icon on the bottom of the screen.

Once the database engine is running, start ISQL by double clicking on the
ISQL icon. The ISQL window appears on your screen, as in the figure.

Watcom Interactive SQL @;

Data

The ISQL Interface

38

The ISQL main window contains three text windows.

¢ The command window This is the area where you type SQL commands
and queries to send to the database, as well as instructions to ISQL itself.

Chapter 5 Using ISQL

Help

It is a standard Windows edit control. If more lines are typed than will
fit in this window, the window automatically scrolls.

¢ The statistics windows This window displays information such as the
number of rows returned on a query.

¢ The data window This window displays the rows of a database that are
returned from a query.

You can scroll each of these windows using the cursor keys or the scroll bar
on the right side of the window. These windows can also be made larger and
maximized to full screen size in the standard Windows fashion. See the
Microsoft Windows User’s Guide for more information on controlling
windows and working with text.

Help is available by pressing the F1 key, or by choosing Help from the Help
menu. The help system can also be activated with the HELP command. The
help files contain help on many topics—most of this manual is contained in
the help files. For more information on using help, choose Using Help from
the Help menu.

39

Connecting to the database

Connecting to the database

ISQL is not yet connected to the database. To connect to the PSDemoDB
database that you have already started running, type the command

connect

in the command window, and click on the button labelled Execute.

ISQL will ask you to enter a user identification (user ID), and password as
shown in the figure.

Type in the three-letter user ID DBA, and press the Tab key to move to the
next field.

Type in the three-letter password for the DBA user ID: SQL. The password
does not appear when you type it. This prevents anyone else from seeing
your password.

The DBA user ID

Watcom SQL databases are always created with user ID "DBA" and
password "SQL." The PSDemoDB database was created under the user ID
DBA.

The connect dialog contains a button labelled More>>. Pressing this button
will reveal a larger dialog box which contains more options for connecting to
the database engine. For the purposes of this tutorial, pressing this button is

40

Chapter 5 Using ISQL

not necessary. For more information about the Connect command, see the
description in "Command Syntax" on page 181.

Press Enter (or click the OK button) to connect to the database.

If you have made typing mistakes or if the demo database is not found, an
error message will appear. You can use the tab key to move to the field in
error and correct the problem using the cursor keys (¢, —) and the
backspace key («).

If you successfully connect to the database, the statistics window should
display the message "Connected to database".

Database structure

Now that you have connected, you can explore the structure of the active
database. The demo database concerns a fictional small company. It
contains internal information about employees and departments, as well as
information about contacts and orders. All of this information is organized
into a number of tables. Select Insert Table... from the Edit menu, Or press
the F7 key to display a dialog box listing the tables in the current database.
The table names are of the form DBA.table_name. The DBA prefix indicates
that this database is owned by user ID DBA.

In addition to the tables that are part of the database, there are several system
tables listed, which maintain information about the state of the database
itself.

Select the DBA.department table with the mouse, and press the Details
button. This produces a listing of the columns in that table.

These tables can be inserted into commands in the command window. For
now, however, simply press the Cancel button on each dialog box to clear
them, without taking any actions.

11

Working with ISQL

Working with ISQL

Entering commands

Commands are typed into the command window, and executed by pressing
the execute key (F9) or by clicking the Execute button.

Multiple commands can be entered at one time by separating them with a
semicolon. Commands can also be stored in a text file or loaded from a text
file, by choosing Save or Open from the File menu, respectively.

Displaying data
One of the principal uses of ISQL is to look at information in the database.

For example, to look at the entire contents of the table called DBA .employee,
type

select * from "DBA".employee

and press the Execute key (F9) or click the Execute button.

Keywords
The double quotes around DBA in the above command are necessary
because DBA is a SQL keyword.

The query is sent to the Watcom SQL database engine, which executes it,
and returns the results of the query to the ISQL data window , as shown
below. (Your screen may be somewhat different, depending on your video
configuration.)

42

Chapter 5 Using ISQL

manager_id emp_fname
501 Matthew
501 Kurt

1576 John

501 Linda

1293 David

302 Mary

902 Jose

1293 Moira

501 Susan

902 Alison
1293 Mary Anne

75 rows in query (/O estimate 13)
|PLAN> employee (seq)

If you make a spelling mistake, use the standard edit keys for correcting the
problem.

Scrolling the data window

Not all of the DBA.employee table fits into the data window. There is more
information about each of these employees, and there are more employees
than fit on the screen.

Use the scroll bar at the bottom of the data window to pan left and right
across the information about each employee.

Scroll the window to the right to see the rest of the information that is held
about each employee visible in the list. Scroll back to the left by scrolling
the window in the opposite direction until the emp_id column appears again.

43

Working with ISQL

atcom Interactive S

street

77 Pleasant Street
Driscoll 154 School Street
Crow 531 Main Street
Siperstein 341 Hillside Avenue
Scott 21 Riverdale Drive
Garcia 98 Purvis Street
Martinez 495 Washington Street
Kelly 12 Fountain Road
Smith 177 Johnson Street
Clark 56 Carver Street

Shea 197 Camden Road

Statistics

5 rows in query (/O estimate 13)
PLAN> employee (seq)

Command

elect* from "DBA".employee

To see information on other employees, use the scroll bar to the right of the
data window. Scroll the window down to see more employees inthe table.
Continue scrolling the window until the data no longer scrolls.

The vertical scroll bar is slightly differently to a standard scroll bar. If the
number of rows in the result of a command or query is unknown, a guess as
to the number of rows is used to determine how far to scroll. If ISQL
determines that its guess is wrong, the guess will be adjusted and the slider
will "jump".

Command recall

Now list the contents of one of the other tables in the database; the
DBA .customer table, Type the following and then press F9:

select * from "DBA".customer

The contents of the customer database table are displayed in the data
window, and the results of the previous query are cleared.

44

Chapter 5 Using ISQL

As you execute commands with ISQL, they are saved in a command history.
To recall commands, choose Recall from the Command menu. This activates
the command recall window shown below.

connect
select = from "DBA"_employee
select * from "DBA" customer

The command recall window displays the first line of the last fifteen
commands that you have executed. Use the cursor up and down keys (T and
) to scroll through the commands.

If you position the cursor on the second command that you executed, which
was:

select * from "DBA".employee

and press the Enter key, the cursor returns to the command window with the
selected command in it. You can now re-execute that command or you can
modify it to make a new command.

The following keys can also be used to recall previous commands:

Ctri+R bring up the command recall window.
Ctri+P cycles backwards through previously executed
commands. Retrieved commands are placed into the

command window.

Ctri+N cycles forward through previously executed commands.

45

Function keys

Function keys

ISQL uses some function keys and special keys as follows:

F1 Help.

F7 Display a list of the tables in the database. The cursor up and down keys
can be used to scroll through the table names changing the highlighted table
name. With the list displayed, pressing Enter will insert the current table
name into the command window at the cursor position. The F7 key can be
used while the table list is displayed, and a list of columns will be displayed
for the highlighted table. Again, Enter can be used to select the highlighted
column name and put it into the command window at the cursor position.

F9 Execute the command that is in the command window. This operation
can also be performed with the mouse by clicking on the Execute button.

Aborting a command

46

The Stop button is used to abort a command.

An abort operation will stop current processing and prompt for the next
command. If a command file was being processed, you will be prompted for
an action to take (Stop command file, Continue, or Exit ISQL). These
actions can be controlled with the ON_ERROR ISQL option (see "SET
OPTION" on page 283).

When an abort is detected, one of three different errors will be reported
depending upon when the abort is detected.

1 If the abort is detected when ISQL is processing the request (as opposed
to the database engine), then the following message will be displayed:

ISQL command terminated by user

ISQL will stop processing immediately and the database transaction is
left alone.

2 If the abort is detected while the database engine is processing a data
definition command (CREATE, DROP, ALTER, etc.), the following
message will be displayed:

Terminated by user -- transaction rolled back

Chapter 5 Using ISQL

Since data definition commands all perform a COMMIT automatically
before the command starts, the effect of the ROLLBACK is to just
cancel the current command.

This message will also occur when the database engine is running in
bulk operations mode executing a command that modifies the database
(INSERT, UPDATE, and DELETE). In this case, ROLLBACK will
cancel not only the current command, but everything that has been done
since the last COMMIT. In some cases, it will take a considerable
amount of time for the database engine to perform the automatic
ROLLBACK.

3 If the abort is detected by the database engine while processing a
standard data manipulation command (SELECT, INSERT, DELETE,
etc.) and the engine is not running in bulk operations mode, then the
following message will be displayed.

Statement interrupted by user

The effects of the current command will be undone.

Available commands for ISQL

You can enter any SQL statement supported by Watcom SQL in ISQL, as
well as several other commands which are avaiable only within ISQL. Two
such commands are INPUT and OUTPUT, which allow you to put data into a
&dbdame database from other formats, and write Watcom SQL data out into
other formats for use elsewhere.

For more information about the commands supported by ISQL, see
"Command Syntax" on page 181

47

Using the database tools

Using the database tools

ISQL provides a convenient platform for using the set of database tools that
are provided with Watcom SQL.

Select Database Tools from the Window menu to display the DBTOOLSs
dialog box. From this dialog box you can run the utility programs described
in "Program Summary" on page 307.

48

Chapter 5 Using ISQL

Leaving ISQL

When you have finished working with ISQL, the EXIT command will return
you to the operating system (or choose Exit from the File menu). You can
stop the database engine by clicking on the Watcom SQL icon and selecting
the Close menu item.

49

Leaving ISQL

50

CHAPTER 6

Watcom SQL Concepts

About this chapter

Contents

This chapter explains how PowerBuilder and InfoMaker connect to a
Watcom SQL database and how you can use PowerBuilder or InfoMaker to
access and manipulate Watcom SQL databases.

* & & o o

"Connecting to a database" on page 52
"Savepoints" on page 58

"Two-phase commit" on page 59
"Understanding the NULL value" on page 60

"Ensuring database integrity" on page 61

PowerBuilder users

For more information about connecting to the database and storing and
manipulating extended table and column (catalog) information, see
Connecting to Your Database.

51

Connecting to a database

Connecting to a database

Any program that uses a database must first establish a connection with the
database engine. A user ID and password must be specified when the
connection is established. The connection is usually established
transparently to users by the program they are running. The user may be
prompted to enter a user ID, password, and optionally other database
parameters, but the program will take care of establishing the connection by
using the SQL CONNECT statement.

Multiple connections
Multiple simultaneous connections to the database engine are supported. In
this case, you must use the PowerBuilder transaction object.

Named connections

52

When a connection is established with a Watcom SQL database through
ODBC, the ODBC driver generates a unique name to identify the connection
internally. Therefore, if you are using ODBC to connect to Watcom SQL
databases, you do not have to be concerned with named connections.
PowerBuilder and InfoMaker connect to Watcom SQL through ODBC.
Some programs using the database engine may have more than one
connection established with the database engine. In this case, each
connection after the first must be a named connection. The CONNECT
command is used to establish a named connection (see "CONNECT" on page
202). In particular, ISQL employs named connections.

From one program, only one of the connections is active at any time. Any
commands to the database engine are associated with the active connection.
The SET CONNECTION command is used to switch the active connection.

Applications can use a second connection for automatically generating
primary key values without inhibiting concurrency (see "Primary key
generation" on page 110).

Chapter 6 Watcom SQL Concepts

Connection parameters

The connection parameters are a string used to specify how to connect to a
database engine or network server. This string is a list of parameter settings
of the form KEYWORD=value, delimited by semicolons. The number sign
"#" is an alternative to the equals sign, and should be used when setting the
connection parameters string in the SQLCONNECT environment variable, as
using "=" inside an environment variable setting is a syntax error. The
connection parameters string is set through an attribute of the DbParm
transaction object. The keywords are set in the Connectstring value. The
keywords are from the following table.

Verbose keyword Short form
Userid UID
Password PWD
EngineName ENG
DatabaseName DBN
DatabaseFile DBF
DatabaseSwitches DBS
AutoStop AutoStop
Start Start
Unconditional UNC
DataSourceName DSN

A connection parameter string may look like the following:

sqlca.DbParm="Connectstring='DSN=PowerBuilderDemoDb;UID=dba; -
PWD=sql’"

The minimum attributes required to connect to Watcom SQL are the dbms
and the DbParm. The following example uses the default transaction object,
which is sqlca.

sqglca.dbms="odbc"

sqglca.DbParm
="Connectstring='DSN=PowerBuilderDemoDb;UID=dba;PWD=sql’"

DBBACKUP, DBUNLOAD, and DBVALID will take the following steps
for connecting to the database. These parameter settings are used as default
values for unspecified parameters to connect:

53

Connecting to a database

Look for a local database engine that has a name that matches the
EngineName parameter. If no EngineName is specified, look for the
default local database engine (the first database engine started).

Look for the network requestor.

If DatabaseName is specified, look for a local database engine that has a
name that matches the DatabaseName parameter.

If DatabaseName is not specified and DatabaseFile is specified, look for
a local database engine that matches the root of the file name. For
example, if DatabaseFile is C:\WSQL40\SAMPLE.DB, then look for a

local engine named sample.

If no matching local engine is found and the network requestor
(DBCLIENT) is not running, start a database engine or network
requestor using the Start parameter (or the default start command). The
StayConnected attribute of the transaction object will determine if the
engine automatically stops when the last database is shut down or if the
network requestor automatically stops when its last connection is gone.

If the database named by DatabaseName or DatabaseFile is not
currently running, send a request to the engine or network server to start
a database using the DatabaseFile, DatabaseName, and
DatabaseSwitches parameters. The AutoStop parameter will determine
if the database automatically shuts down when the last connection to the
database is disconnected.

Send a connection request to the database engine or network server
based on the Userid, Password, and ConnectionName parameters.

For example, consider the following parameters:

DBF=c: \pb4\pbdemodb.db; UID=dba; PWD=sql

If there is a local engine with the name PSDemoDB, then you will
connect o it.

If the client is running and there is a server with the name PSDemoDB,
then you will connect to it.

Otherwise, a local engine will be started on the file
C:\PB4\PSDEMODB.DB. If the database exists, and the engine starts
without errors, then you will be connected to that engine.

The Userid and Password specify the authorization information to the
database engine. The ConnectionName is optional and allows you to name

54

Chapter 6 Watcom SQL Concepts

Transactions

Example

the connection established with the database engine. The ODBC interface
will prompt for missing information that is required.

The Start parameter allows you to specify a command line for starting the
database engine or network requestor (DBCLIENT). The default start
command is DBSTART -q (DBSTARTW -q for Windows). Use DB32W
(under NT), or DB32W (under Windows) to take advantage of the 32-bit
engine. Before Watcom SQL Version 4.0, the start string required a %d
somewhere in the command as a placeholder for the database name. This is
no longer necessary because the information is passed as EngineName or as
DatabaseFile.

SQL statements (commands) are grouped into transactions. Each
transaction is a logical unit of work, meaning that the commands within a
transaction should be somewhat related. In addition, the database engine

guarantees that either each transaction is completed in its entirety, or not at
all.

InfoMaker
InfoMaker automatically takes control of the transaction so you do not have
to.

A transaction begins when a connection is established. The transaction ends
with a COMMIT or a ROLLBACK. A new transaction starts with the next
SQL statement.

The COMMIT statement ends a transaction and commits the changes to the
database. If the command is successful, the transaction changes are
guaranteed to be in the database. The ROLLBACK statement aborts all
changes made during the current transaction (since the last COMMIT
statement). Additionally, on any power failure or abnormal termination of
the database software, a ROLLBACK is performed automatically.

Suppose a customer becomes inactive and all records for that customer are to
be removed from the database. SQL commands are required to remove rows
related to the customer from the customer table and all other tables. The
database would be in an inconsistent state if only the row from the customer
table was deleted, since other information related to the deleted customer in

55

Connecting to a database

other tables would remain. Thus, DELETE commands are used to remove all
the customer information from a logical unit of work.

For a complete description of consistency checking in the database, see
"Ensuring database integrity" on page 61.

AutoCommit Use care when you change the setting of the boolean
attribute AutoCommit in the transaction object. The setting of AutoCommit
determines whether normal recoverable transaction handling takes place. If
AutoCommit is TRUE, ROLLBACK cannot be issued. AutoCommit is set to
be TRUE by a statement of the form:

sqglca.autocommit = true

When AutoCommit is FALSE (the default), normal transaction processing
takes place: a BEGIN TRANSACTION is internally issued on a successful
connect and this transaction is terminated by a COMMIT TRANSACTION
or ROLLBACK TRANSACTION. AutoCommit is set to be FALSE by a
statement of the form:

sqlca.autocommit = false

Connecting during development

In the development environment, a database connection is established
whenever you require access to the database—for example, when you:

¢ Invoke a painter that requires access to the database (for example, the
Database painter or the Query painter)

¢ Save a form or query that accesses the database

A user ID and password must be available to PowerBuilder when the
connection is established.

Closing the connection

56

The database connection is opened the first time you need to connect to the
database and closed when you close the painter that needed the connection.

In PowerBuilder The setting of the Database variable StayConnected
controls when PowerBuilder closes the connection. The default is to close
the connection when you close the painter.

Chapter 6 Watcom SQL Concepts

Connections during execution

When a user is running an application, the database connection is usually
transparent to the user. The user may be prompted to enter a user ID,
password, and optionally a database name, but the program takes care of
establishing the connection by populating the transaction object with the
correct attributes and then issuing a connect, using sqlca.

57

Savepoints

Savepoints

58

Within a transaction, Watcom SQL supports savepoints. Before Watcom
SQL Version 4.0, savepoints were referred to as subtransactions.
Savepoints only apply when Autocommit is set to false. A SAVEPOINT
command defines a point in a transaction where all changes after the point
can be undone by a ROLLBACK TO SAVEPOINT command. Once a
RELEASE SAVEPOINT command has been executed, the savepoint can no
longer be used.

Savepoints can be named and they can be nested. By using named, nested
savepoints, you can have many active savepoints within a transaction.
Changes between a SAVEPOINT and a RELEASE SAVEPOINT can still be
canceled by rolling back to a previous savepoint or rolling back the
transaction itself. Changes within a transaction are not a permanent part of
the database until the transaction is committed. All savepoints are released
when a transaction ends.

Savepoints make use of the rollback log. They cannot be used in bulk
operations mode. There is very little additional overhead in using savepoints.

Chapter 6 Watcom SQL Concepts

Two-phase commit

Two-phase commit is a mechanism to coordinate transactions between
multiple servers. It is a primary component of most distributed database
systems. Most applications do not need to use two-phase commit.

The first phase of a two-phase commit asks the database engine to prepare to
commit and report any errors that would occur on a commit. This phase is
accomplished with the PREPARE TO COMMIT command. The second
phase actually performs the commit operation via the COMMIT command.

If you want to coordinate transactions with multiple servers, you can issue
the PREPARE TO COMMIT command to each server. If one of them fails,
you can deal with the error or rollback all transactions. If all of the first
phase commits are successful, you can commit each transaction knowing that
there won’t be any errors (except environment errors such as a network
connection going down or one of the servers going off line).

59

Understanding the NULL value

Understanding the NULL value

60

The NULL value is a special value which is different from any valid value
for any data type. However, the NULL value is a legal value in any data
type. The NULL value is used to represent missing or inapplicable
information. Note that there are two separate and distinct cases where NULL
is used:

¢ missing There may be a valid value for this field, but that value is
unknown.

¢ inapplicable The field does not apply for this particular row.

Many common errors in formulating SQL queries are caused by the behavior
of NULL. See "NULL value" on page 263 for a complete description of the
behavior of NULL. See also the "Empty String is NULL" attribute of an Edit
Style in the DataWindow painter, in the PowerBuilder or InfoMaker User’s
Guide.

Chapter 6 Watcom SQL Concepts

Ensuring database integrity

Entity integrity

Example

Watcom SQL supports entity integrity and referential integrity.

Entity integrity ensures that every row of a given table can be uniquely
identified by a primary key that does not contain any NULL values.

A table of employees might use an employee ID as a primary key. This
would imply that employee IDs cannot be the NULL value, and each row in
the employee table has a unique employee ID.

Although only the employee ID column is part of the primary key in this
example, a primary key can consist of more than one column.

Creating primary keys

When you use the Database painter to create or alter a table, you can create a
primary key. PowerBuilder or InfoMaker will generate the Watcom SQL
CREATE TABLE or ALTER TABLE statement syntax to create the key and
submit it to the Watcom SQL database.

Using primary keys

The use of primary keys is optional. However, in the PowerBuilder and
InfoMaker DataWindows, you can update data only if the table has a
unique index. A unique index is created automatically in Watcom SQL
databases when you create the primary key.

Primary key searches Watcom SQL has built-in facilities to make
searches on primary keys go quickly. User-defined indexes on the primary
key are not required and not recommended.

For more information about creating and maintaining primary keys in

PowerBuilder or InfoMaker, see the PowerBuilder or InfoMaker User’s
Guide.

61

Ensuring database integrity

Referential integrity

Example 1

Example 2

Two separate tables in a database are often related in some way. Watcom
SQL supports referential integrity, which guarantees that all foreign key
values either match a value in the corresponding primary key or contain the
NULL value if they are defined to allow NULL.

Assume you have a table of employees and a table of departments. The table
of employees is related to the department table, because each employee must
be assigned to a department in the department table. Each row in the
department table contains a department ID. In the employee table, the
department ID is called a foreign key for the department table; each
department ID in the employee table must correspond exactly to a
department ID in the department table. This is a mandatory foreign key
since it is not allowed to be NULL.

Assume there is also a table listing office locations. The employee table
might have a foreign key for the office table that indicates where the
employee’s office is located. However, office locations are often not
assigned when the employee is hired. In this case, the foreign key is
optional and should allow the NULL value to indicate that it is optional
when the office location is unknown.

Creating foreign keys

62

‘When you use the Database painter to create or alter a table, you can create
foreign keys. PowerBuilder or InfoMaker will generate the Watcom SQL
CREATE TABLE or ALTER TABLE statement syntax to create the key and
submit it to the Watcom SQL database.

Once a foreign key has been created, Watcom SQL ensures that the columns
will contain only values that are present as primary key values in the table
associated with the foreign key.

Searches and joins

Watcom SQL has built-in facilities to make searches and joins on foreign
keys efficient. User-defined indexes on the foreign key are not required
and not recommended.

Chapter 6 Watcom SQL Concepts

Referential integrity actions

Example

Referential integrity actions can be used by a database designer to maintain
foreign key relationships in the database. Whenever a primary key value is
changed or deleted from a database table, there may be corresponding
foreign key values in other tables that should be modified in some way.
Through the use of the CREATE TABLE or ALTER TABLE statements,
you can define the actions taken in these situations.

A foreign key in the Employee table might be defined with the following
clause:
FOREIGN KEY REFERENCES Department

ON UPDATE CASCADE
ON DELETE CASCADE

The ON UPDATE CASCADE tells the database engine that, whenever it
updates a primary key value in the Department table, it should automatically
update any corresponding foreign keys in the Employee table. ON UPDATE
CASCADE must be entered through the Database Administrator.

The ON DELETE CASCADE tells the database engine that whenever it
deletes a row from the Department table, it should automatically delete any
rows in the Employee table whose foreign keys correspond to the primary
key value in the row deleted from the Department table. You can specify the
action on DELETE through the foreign key definition in the Database
painter.

You can specify either an ON UPDATE clause, an ON DELETE clause, or
both, followed by one of the following actions:

CASCADE When used with ON UPDATE, update the corresponding
foreign keys to match the new primary key value. When used with ON
DELETE, deletes the rows from the table that match the deleted primary key.

SET NULL Sets to NULL all the foreign key values that correspond to the
updated or deleted primary key.

SET DEFAULT Sets to the value specified by the column(s) DEFAULT
clause, all the foreign key values that match the updated or deleted primary

key value. This is set by the "Initial" dropdown.

RESTRICT Generates an error if an attempt is made to update or delete a
primary key value while there are corresponding foreign keys elsewhere in

63

Ensuring database integrity

64

the database. This was the only form of referential integrity prior to Watcom
SQL Version 4.0 and is the default action if no action is specified.

If an error occurs during the processing of a referential action, the statement
that caused the trigger will fail.

Referential action permissions

A referential action executes with the permissions of the creator of the
foreign table. A referential action can update or delete rows from a table
that a user could not update or delete directly.

Watcom SQL also supports triggers (see "Triggers" on page 158), which
allow you to define actions when rows are inserted, updated, or deleted.

CHAPTER 7

Data Types, Functions, Expressions, and
Conditions

About this chapter This chapter describes the data types, functions, and expressions you can use
with Watcom SQL databases. It also describes the conditional statements
you can use in functions and expressions.

You can use expressions in commands including the SELECT command.
The SELECT command is described in "SELECT Command Syntax" on
page 97. For information about other Watcom SQL commands, see
"Command Syntax" on page 181.

Contents "Data types" on page 66
"Functions" on page 71

"Expressions" on page 84

* & o o

"Conditions" on page 90

PowerBuilder users

In PowerBuilder, you can also use expressions in commands in embedded
SQL and in the Database Administration painter (DBA notepad). For more
information about embedded SQL, see PowerBuilder PowerScript
Language; for more information about the Database Administration
painter, see the PowerBuilder User’s Guide.

65

Data types

Data types

Syntax

Purpose

Usage

Authorization
Side effects
See also

Description

66

data-type:

BINARY [(max-length)]
CHAR [(max-length)]
CHARACTER [(max-length)]
CHARACTER VARYING [(max-length)]
DATE

DECIMAL [(precision [,scale])]
DOUBLE

FLOAT

INT

INTEGER

LONG BINARY

LONG VARCHAR

NUMERIC [(precision [,scale])]
REAL

SMALLINT

TIME

TIMESTAMP

VARCHAR [(max-length)]

To specify a data type.

PowerScript embedded SQL.

Data type display

When you are connected to a Watcom SQL database, the Watcom SQL
data types display in the data type lists in the Database painter and the
Select painter.

Must be connected to the database.
None.
CREATE TABLE, ALTER TABLE, Compound Statements, Expressions.

All information is stored in one of these data types:

CHAR [(size)]
Character data of maximum length size. If size is omitted, the default is 1.

Chapter 7 Data Types, Functions, Expressions, and Conditions

The maximum size allowed is 32,767. See "Character data" and "Long
strings" below.

CHARACTER [(size)]
Same as CHAR|(size)].

VARCHAR [(size)]
Same as CHAR[(size)].

CHARACTER VARYING[(size)]
Same as CHAR|(size)].

LONG VARCHAR
Arbitrary length character data. The maximum size is limited by the
maximum size of the database file (currently 2 gigabytes).

BINARY [(size)]

Binary data of maximum length size (in bytes). If size is omitted, the default
is 1. The maximum size allowed is 32,767. The BINARY data type is
identical to the CHAR data type except when used in comparisons.

BINARY values will be compared exactly while CHAR values are compared
without respect to upper/lower case (depending on the case-sensitivity of the
database) or accented characters.

LONG BINARY
Arbitrary length binary data. The maximum size is limited by the maximum
size of the database file (currently 2 gigabytes).

INT
Signed integer of maximum value 2,147,483,647 requiring 4 bytes of
storage.

INTEGER
Same as INT.

SMALLINT
Signed integer of maximum value 32,767 requiring 2 bytes of storage.

DECIMAL [(precision[,scale])]

A decimal number with precision total digits and with scale of the digits
after the decimal point. The defaults are scale = 6 and precision = 30. You
can change the defaults in the Database painter.

67

Data types

68

For more information about the Database painter, see the PowerBuilder
User’s Guide.

The storage required for a decimal number can be computed as:

2 + int((before+l) / 2) + int((after+l)/2)

where int() takes the integer portion of its argument, and before and after
are the number of significant digits before and after the decimal point. Note
that the storage is based on the value being stored, not on the maximum
precision and scale allowed in the column.

NUMERIC [(precision[,scale])]
Same as DECIMAL.

FLOAT
A double precision floating-point number stored in 8 bytes. The range of
values is 2.22507385850720160e-308 to 1.79769313486231560e+308.

DOUBLE
Same as FLOAT.

REAL
A single precision floating-point number stored in 4 bytes. The range of
values is 1.175494351e-38 to 3.402823466¢+38.

DATE

A calendar date, such as a year, month and day. The year can be from the
year 0001 to 9999. For historical reasons, a DATE column can also contain
an hour and minute, but the TIMESTAMP data type is now recommended
for anything with hours and minutes. A DATE value requires 4 bytes of
storage.

TIMESTAMP

A point in time, containing year, month, day, hour, minute, second and
fraction of a second. The fraction is stored to 6 decimal places. A
TIMESTAMP value requires 8 bytes of storage.

TIME

A time of day, containing hour, minute, second and fraction of a second. The
fraction is stored to 6 decimal places. A TIME value requires 8 bytes of
storage. (ODBC standards restrict TIME data type to an accuracy of
seconds. Do not use Time data types in WHERE clause comparisons.)

Chapter 7 Data Types, Functions, Expressions, and Conditions

Character data

Long strings

Character data is placed in the database using the exact binary representation
that is passed from the application. This usually means that character data is
stored in the database with the binary representation of the current code
page. Code pages are the character set representation used by
IBM-compatible personal computers. You can find documentation about
code pages in the documentation for your operating system.

All code pages are the same for the first 128 characters. If you use special
characters from the top half of the code page (accented international
language characters), you must be careful with your databases. In particular,
if you copy the database to a different machine using a different code page,
those special characters will be retrieved from the database using the original
code page representation. With the new code page, they will appear on the
screen to be the wrong characters.

This problem also appears if you have two clients using the same multi-user
server, but running with different code pages. Data inserted or updated by
one client may appear incorrect to another.

This problem also shows up if a database is used across platforms.
PowerBuilder and many other Windows applications insert data into the
database in the standard ANSI character set. If non-Windows applications
attempt to use this data, they will not properly display or update the extended
characters. This problem is quite complex. If any of your applications use
the extended characters in the upper half of the code page, make sure that all
clients and all machines using the database use the same or a compatible
code page.

Watcom SQL treats CHAR, VARCHAR, and LONG VARCHAR columns
all as the same type. Values up to 254 characters are stored as short strings,
which are stored with a preceding length byte. Any values that are longer
than 255 bytes are considered long strings. Characters after the 255th are
stored separate from the row containing the long string value.

There are several functions (see "Functions" on page 71) that will ignore the
part of any string past the 255th character. They are soundex, similar, and all
of the date functions. Also, any arithmetic involving the conversion of a long
string to a number will work on only the first 255 characters. It would be
extremely unusual to run in to one of these limitations.

All other functions and all other operators will work with the full length of
long strings.

69

Data types

Dates and times

70

Date, time and timestamp constants are represented as strings. They are
fetched from the database engine as a string, and they are sent to the database
engine as a string. Internally, they are stored as numbers. When a string is
compared to a date, the string will automatically be converted to a date (see
"Date format" on page 88). If you wish to compare a date to a string as a
string, you must use the dateformat function or CAST operator to convert the
date.

As mentioned, the DATE data type can also contain a time. (Watcom SQL
Version 3.0 did not support the TIMESTAMP data type, so the DATE was
used for both dates and dates with times.) If the time is not specified, the time
defaults to 0:00 or 12:00am (midnight). This is important to remember since
any comparisons of dates always involve the times as well. A database date
value of 21992-05-23 10:00° will not be equal to the constant *1992-05-23".
The dateformat function or one of the other date functions can be used to
compare parts of a date and time field. For example:

dateformat (invoice_date,’'yyyy/mm/dd’) = ' 1992/05/23"
If a database column requires only a date, the application should make sure

that the times are not specified. This way, comparisons with date-only
strings will work as expected.

Chapter 7 Data Types, Functions, Expressions, and Conditions

Functions

Syntax normal-function:

| ABS (numeric-expr) |
I ACOS (numeric-expr) |
I'ARGN (integer-expr, expression [,...]) I
I ASCII (string-expr) I
I ASIN (numeric-expr) |
I ATAN (numeric-expr) |
| CEILING (numeric-expr) |
I CHAR (string-expr) |
| COALESCE (expression, expression [, ...]) |
I COS (numeric-expr) |
I COT (numeric-expr) |
| DATE (expression) I
| DATEFORMAT (datetime-expr, string-expr) I
| DATETIME (expression) |
| DAY (date-expr) I
| DAYS (date-expr) I
| DAYS (date-expr, date-expr) I
| DAYS (date-expr, integer-expr) I
| DOW (date-expr) I
I'EXP (numeric-expr) |
I FLOOR (numeric-expr) |
| HOUR (datetime-expr) |
I HOURS (datetime-expr) |
I HOURS (datetime-expr, datetime-expr) |
| HOURS (datetime-expr, integer-expr) |
I IFNULL (expression, expression [, expression]) |
I ISNULL (expression, expression [, ...]) |
| LCASE (string-expr) |
| LEFT (string-expr, numeric-expr) |
I LENGTH (string-expr) I
I LOCATE (string-expr, string-expr [, numeric-expr]) |
I'LOG (numeric-expr) I
I LOG10 (numeric-expr) |
I'LTRIM (string-expr) I
I MINUTE (datetime-expr) |
| MINUTES (datetime-expr) I
I MINUTES (datetime-expr, datetime-expr) I
| MINUTES (datetime-expr, integer-expr) |
| MOD (numeric-expr, numeric-expr) |
I MONTH (date-expr) |
| MONTHS (date-expr) |
I MONTHS (date-expr, date-expr) |
I MONTHS (date-expr, integer-expr) |

7

Functions

Syntax

72

I
|
|
|
I
|
[
I
|
|
I
I
|
|
|
I
|
|
I
|
|
|
I
|
I
[
I

NOW (*)

NUMBER (™)

Pl (")

PLAN (string-expr)

RCASE (string-expr)

REMAINDER (numeric-expr, numeric-expr)
REPEAT (string-expr, numeric-expr)
RIGHT (string-expr, numeric-expr)

RTRIM (string-expr)

SECOND (expression)

SECONDS (datetime-expr)

SECONDS (datetime-expr, datetime-expr)
SECONDS (datetime-expr, integer-expr)
SIGN (numeric-expr)

SIMILAR (string-expr, string-expr)

SIN (numeric-expr)

SOUNDEX (string-expr)

SQRT (numeric-expr)

STRING (string-expr [, ...])

SUBSTR (string-expr, integer-expr [, integer-expr])

TAN (numeric-expr)

TODATE (expression)

TODAY (™)

TRACEBACK (™)

TRIM (string-expr)

WEEKS (date-expr)

WEEKS (date-expr, date-expr)
WEEKS (date-expr, integer-expr)
YEAR (date-expr)

YEARS (date-expr)

YEARS (date-expr, date-expr)
YEARS (date-expr, integer-expr)

YMD (integer-expr, integer-expr, integer-expr)

aggregate-function:

AVG (aggregate-parm)
COUNT (™)

COUNT (aggregate-parm)
LIST (aggregate-parm)
MAX (aggregate-parm)
MIN (aggregate-parm)
SUM (aggregate-parm)

where aggregate-parm is one of:
DISTINCT column-name
or expression

Chapter 7 Data Types, Functions, Expressions, and Conditions

Purpose
Usage
Authorization
Side effects
See also

Description

Aggregate functions

To use a built-in function.

Embedded SQL, DataWindow, and Database painter expressions.
Must be connected to the database.

None.

Expressions.

Watcom SQL has two types of functions. Normal functions take parameters
and return results based on those parameters. Aggregate functions
summarize data over a group of rows from the database. The groups are
formed using the GROUP BY clause of the SELECT statement. Aggregate
functions are only allowed in the select list and in the HAVING and ORDER
BY clauses of a SELECT statement.

For many of the functions, the types for function parameters have been
specified. If you provide data of some other type, Watcom SQL will convert
the data automatically. Alternative, you can use the CAST operator to do
explicit conversions.

NULL value
Unless otherwise stated, any function that receives the NULL value as a
parameter will return the NULL value.

COUNT(*)

Returns the number of rows in each group.

COUNT(expression)
Returns the number of rows in each group where the expression is not the
NULL value.

COUNT(DISTINCT column-name)

Returns the number of different values in the column with name
column-name. Rows where the value is the NULL value are not included in
the count.

73

Functions

74

LIST(string-expr)

Returns a string containing a comma-separated list composed of all the
values for string-expr in each group of rows. Rows where string-expr is
the NULL value are not added to the list.

LIST(DISTINCT column-name)

Returns a string containing a comma-separated list composed of all the
different values for string-expr in each group of rows. Rows where
string-expr is the NULL value are not added to the list.

AVG(numeric-expr)

Computes the average of numeric-expr for each group of rows. This
average does not include rows where the expression is the NULL value.
Returns the NULL value for a group containing no rows.

AVG(DISTINCT column-name)
Computes the average of the unique values for numeric-expr for each group
of rows. This is of limited usefulness, but is included for completeness.

MAX(expression)

Returns the maximum expression value found in each group of rows. Rows
where expression is the NULL value are ignored. Returns the NULL value
for a group containing no rows.

MAX(DISTINCT column-name)
Returns the same as MAX(expression), and is included for completeness.

MIN(expression)

Returns the minimum expression value found in each group of rows. Rows
where expression is the NULL value are ignored. Returns the NULL value
for a group containing no rows.

MIN(DISTINCT column-name)
Returns the same as MIN(expression), and is included for completeness.

SUM(expression)

Returns the total of expression for each group of rows. Rows where the
expression is the NULL value are not included. Returns NULL for a group
containing no rows.

Chapter 7 Data Types, Functions, Expressions, and Conditions

Normal functions

Miscellaneous

SUM(DISTINCT column-name)
Computes the sum of the unique values for numeric-expr for each group of
rows. This is of limited usefulness, but is included for completeness.

Normal functions have been broken up into the following subcategories:
Miscellaneous functions
Numeric functions

String functions

Date and time arithmetic functions

* & o o o

Other date and time functions

ARGN(integer-expr, expression [-.1)
Using the value of integer-expr as n, return the n’th argument (starting at 1)
from the remaining list of arguments.

COALESCE(expression, expression [..., expression])
Returns the value of the first expression that is not NULL.

IFNULL(expression1, expression2 [, expression3])

If the first expression is the NULL value, then the second expression is
returned. Otherwise, the value of the third expression is returned if it was
specified. If there was no third expression and the first expression is not
NULL then the NULL value is returned.

ISNULL(expression, expression [..., expression])
Same as the COALESCE function.

NUMBER(*)

Generates numbers starting at 1 for each successive row in the results of the
query. This is extremely useful for generating primary keys when using the
INSERT from SELECT command (see "INSERT" on page 259).

In Embedded SQL, care should be exercised when seeking a cursor that
references a query containing a NUMBER(*) function. In particular, this
function will return negative numbers when a database cursor is positioned
relative to the end of the cursor (an absolute seek with a negative offset).

75

Functions

Numeric

ABS(numeric-expr)
Compute the absolute value of numeric-expr.

ACOS(numeric-expr)
Compute the arc-cosine of numeric-expr in radians.

ASIN(numeric-expr)
Compute the arc-sine of numeric-expr in radians.

ATAN(numeric-expr)
Compute the arc-tangent of numeric-expr in radians.

CEILING(numeric-expr)
Compute the ceiling (smallest integer not less than) of numeric-expr.

COS(numeric-expr)
Compute the cosine of numeric-expr, expressed in radians.

COT(numeric-expr)
Compute the cotangent of numeric-expr, expressed in radians.

EXP(numeric-expr)
Compute the exponential function of numeric-expr.

FLOOR(numeric-expr)
Compute the floor (largest integer not greater than) of numeric-expr.

LOG(numeric-expr)
Compute the logarithm of numeric-expr.

LOG10(numeric-expr)
Compute the logarithm base 10 of numeric-expr.

MOD(dividend, divisor)

Returns the remainder when dividend is divided by divisor. Division
involving a negative dividend will give a negative or zero result. The sign
of the divisor has no effect.

PI(*)

Return the numeric value PL

76

Chapter 7 Data Types, Functions, Expressions, and Conditions

String

REMAINDER(dividend, divisor)
Same as the MOD function.

SIGN(numeric-expr)
Return the sign of numeric-expr.

SIN(numeric-expr)
Compute the sine of numeric-expr, expressed in radians.

SQRT(numeric-expr)
Compute the square root of numeric-expr.

TAN(numeric-expr)
Compute the tangent of numeric-expr, expressed in radians.

ASCII(string-expr)
Returns the integer ASCII value of the first character in string-expr, or 0 for
the empty string.

CHAR(numeric-expr)
Returns the character with the ASCII value numeric-expr.

LCASE(string-expr)
Converts all characters in string-expr to lower case.

LEFT(string-expr, numeric-expr)
Returns the leftmost numeric-expr characters of string-expr.

LENGTH(string-expr)
Returns the number of characters in the string string-expr.

LOCATE(string-expr1, string-expr2 [, numeric-expr])

Returns the offset (base 1) into the string string-expr1 of the first occurrence
of the string string-expr2. If numeric-expr is specified, the search will start
at that offset into the string.

The first string can be a long string (longer than 255 characters), but the
second is limited to 255. Ifa long string is given as the second arg, the
function will return a NULL value. If the string is not found, 0 is returned.
Searching for a zero-length string will return 1. If any of the arguments are
NULL, the result is NULL.

77

Functions

78

LTRIM(string-expr)
Returns string-expr with leading blanks removed.

PLAN(string-expr)
Returns the optimization strategy of the SELECT statement string-expr.

RIGHT(string-expr, numeric-expr)
Returns the rightmost numeric-expr characters of string-expr.

RTRIM(string-expr)
Returns string-expr with trailing blanks removed.

SIMILAR(string-expr1, string-expr2)

Returns an integer between 0 and 100 representing the similarity between the
two strings. The result can be interpreted as the percentage of characters
matched between the two strings (100 percent match if the two strings are
identical).

This function can be very useful for correcting a list of names (such as
customers). Some customers may have been added to the list more than once
with slightly different names. Join the table to itself and produce a report of
all similarities greater than 90 percent but less than 100 percent.

SOUNDEX(string-expr)

Returns a number representing the sound of the string-expr. Although it is
not perfect, soundex will normally return the same number for words which
sound similar and start with the same letter. For example:

soundex(‘Smith’) = soundex(‘Smythe’)

The soundex function value for a string is based on the first letter and the
next three consonants other than H, Y, and W. Doubled letters are counted
as one letter. For example,

soundex('apples’)

is based on the letters A, P, L and S.

STRING(string1, [string2, .., string99])

Concatenates the strings into one large string. NULL values are treated as
empty strings (*’). Any numeric or date parameters are automatically
converted to strings before concatenation. Note that this function can be
used to force any single expression to be a string by supplying that
expression as the only parameter.

Chapter 7 Data Types, Functions, Expressions, and Conditions

Date arithmetic

SUBSTR(string-expr, start [, length])

Returns the substring of string-expr starting at the given start position
(origin 1). If the length is specified, the substring is restricted to that length.
Both start and length can be negative. A negative starting position specifies
a number of characters from the end of the string instead of the beginning. A
positive length specifies that the substring ends length characters to the right
of the starting position, while a negative length specifies that the substring
ends length characters to the left of the starting position. Using appropriate
combinations of negative and positive numbers, you can easily get a
substring from either the beginning or end of the string,.

TRACEBACK(*)

Returns a traceback of the procedures and triggers that were executing when
the most recent exception (error) occurred. This is useful for debugging
procedures and triggers.

TRIM(string-expr)
Returns string-expr with both leading and trailing blanks removed.

UCASE(string-expr)
Converts all characters in string-expr to uppercase.

The date and time arithmetic functions allow manipulation of time units.
Most time units (such as MONTH) have four functions for time
manipulation, although only two names are used (such as MONTH and
MONTHS).

YEAR(date-expr)
Returns a 4 digit number corresponding to the year of the given date.

YEARS(date-expr)
Same as the YEAR function.

YEARS(date-expr, date-expr)

Returns the number of whole years from the first date to the second date.
The number may be negative. Hours, minutes and seconds are ignored. For
example, age can be calculated by

YEARS(birthdate, CURRENT DATE)
YEARS(date-expr, integer-expr)

Add integer-expr years to the given date. If the new date is past the end of
the month (such as YEARS(°1992-02-29°, 1)) the result is set to the last

79

Functions

80

day of the month. If the integer-expr is negative, the appropriate number of
years are subtracted from the date. Hours, minutes, and seconds are ignored.

MONTH(date-expr)
Returns a number from 1 to 12 corresponding to the month of the given date.

MONTHS(datetime-expr)

Return the number of months since an arbitrary starting date. This number is
often useful for determining if two date/time expressions are on the same
month in the same year.

MONTHS(invoice_sent) = MONTHS (payment_received)

Note that comparing the MONTH function would be wrong if a payment
were made 12 months after the invoice was sent.

MONTHS(date-expr, date-expr)
Returns the number of whole months from the first date to the second date.
The number may be negative. Hours, minutes and seconds are ignored.

MONTHS(date-expr, integer-expr)

Add integer-expr months to the given date. If the new date is past the end of
the month (such as MONTHS(’1992-01-317, 1)) the result is set to the last
day of the month. If the integer-expr is negative, the appropriate number of
months are subtracted from the date. Hours, minutes and seconds are
ignored.

WEEKS(datetime-expr)

Return the number of weeks since an arbitrary starting date. (Weeks are
defined as going from Sunday to Saturday, as they do in a North American
calendar.) This number is often useful for determining if two dates are in the
same week.

WEEKS(invoice_sent) = WEEKS(payment_received)

WEEKS(date-expr, date-expr)
Returns the number of whole weeks from the first date to the second date.
The number may be negative. Hours, minutes and seconds are ignored.

WEEKS(date-expr, integer-expr)

Add integer-expr weeks to the given date. If the integer-expr is negative,
the appropriate number of weeks are subtracted from the date. Hours,
minutes and seconds are ignored.

Chapter 7 Data Types, Functions, Expressions, and Conditions

DAY(date-expr)
Returns a number from 1 to 31 corresponding to the day of the given date.

DAYS(datetime-expr)
Return the number of days since an arbitrary starting date.

DAYS(date-expr, date-expr)
Returns the number of days from the first date to the second date. The
number may be negative. Hours, minutes and seconds are ignored.

DAYS(date-expr, integer-expr)

Add integer-expr days to the given date. If the integer-expr is negative, the
appropriate number of days are subtracted from the date. Hours, minutes and
seconds are ignored.

DOW(date-expr)
Returns a number from 1 to 7 representing the day of the week of the given
date, with Sunday=1, Monday=2, and so on.

HOUR(datetime-expr)
Returns a number from 0 to 23 corresponding to the hour component of the
given date.

HOURS(datetime-expr)
Return the number of hours since an arbitrary starting date and time.

HOURS(datetime-expr, datetime-expr)
Returns the number of whole hours from the first date/time to the second
date/time. The number may be negative.

HOURS(datetime-expr, integer-expr)
Add integer-expr hours to the given date/time. If the integer-expr is
negative, the appropriate number of hours are subtracted from the date/time.

MINUTE(datetime-expr)
Returns a number from 0 to 59 corresponding to the minute component of the
given date/time.

MINUTES(datetime-expr)

Return the number of minutes since an arbitrary starting date and time.

81

Functions

MINUTES(datetime-expr, datetime-expr)
Returns the number of whole minutes from the first date/time to the second
date/time. The number may be negative.

MINUTES(datetime-expr, integer-expr)

Add integer-expr minutes to the given date/time. If the integer-expr is
negative, the appropriate number of minutes are subtracted from the
date/time.

SECOND(datetime-expr)
Returns a number from 0 to 59 corresponding to the second component of the
given date.

SECONDS(datetime-expr)

Return the number of seconds since an arbitrary starting date and time.

SECONDS(datetime-expr, datetime-expr)
Returns the number of whole seconds from the first date/time to the second
date/time. The number may be negative.

SECONDS(datetime-expr, integer-expr)

Add integer-expr seconds to the given date/time. If the integer-expr is
negative, the appropriate number of seconds are subtracted from the
date/time.

Other date and time

DATE(expression)
Converts the expression into a date, and removes any hours, minutes or
seconds. Conversion errors may be reported.

DATEFORMAT(date-expr, string-expr)

Returns a string representing the date date-expr in the format specified by
string-expr. Any allowable date format can be used for string-expr (for
more information, see the discussion of embedded SQL in ODBC in
PowerBuilder online Help). For example,

DATEFORMAT(’1989-01-01’, ’Mmm Dd, YYyy')
is

rJan 1, 1989’

82

Chapter 7 Data Types, Functions, Expressions, and Conditions

DATETIME(expression)
Converts the expression into a timestamp. Conversion errors may be
reported.

NOW(*)
Returns the current date and time. This is the historical syntax for
CURRENT TIMESTAMP.

TODAY(*)
Returns today’s date. This is the historical syntax for CURRENT DATE.

YMD(year-num, month-num, day-num)
Returns a date value corresponding to the given year, month, and day of the
month. If the month is outside the range 1-12, the year is adjusted
accordingly. Similarly, the day is allowed to be any integer: the date is
adjusted accordingly. For example,

¥YMD(1992, 15, 1 ‘Mar 1 1993’

) =
YMD(1992, 15, 1-1) = 'Feb 28 1993~
YMD(1992, 3, 1-1) = 'Feb 29 1992

83

Expressions

-
Expressions
Syntax expression:
| constant
| [correlation-name .] column-name
| variable-name
| function-name (expression, ...)
| - expression
| expression + expression
| expression - expression
| expression * expression
| expression / expression
| expression + expression
| expression |l expression
| (expression)
| (subquery)
| CAST (expression AS data-type)
| if-expression
constant:
| integer
| number
| ’string’
(

special-constant
| host-variable

special-constant:

CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP
NULL

SQLCODE

SQLSTATE

USER

if-expression:

IF condition THEN expression [ELSE expression] ENDIF

Purpose To specify an arithmetic, string or date/time expression.

84

Chapter 7 Data Types, Functions, Expressions, and Conditions

Usage

Authorization
Side effects
See also

Description

Constants

In the SELECT statement in PowerBuilder and InfoMaker, and in embedded
SQL in PowerBuilder.

Must be connected to the database.
None.
Conditions, Data Types.

Expressions are formed using constants, column names, functions,
subqueries, and operators.

Constants are numbers or strings. String constants are enclosed in
apostrophes (’single quotes’). An apostrophe is represented inside the string
by two apostrophes in a row.

There are several special constants:

CURRENT DATE
The current year, month and day represented in the DATE data type.

CURRENT TIME

The current hour, minute, second and fraction of a second represented in the
TIME data type. Although the fraction of a second is stored to 6 decimal
places, the current time is limited by the accuracy of the system clock. The
clock is only accurate to approximately 1/18th of a second rounded to two
decimal places.

CURRENT TIMESTAMP

Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP
value containing year, month, day, hour, minute, second and fraction of a
second. Like CURRENT TIME, the accuracy of the fraction of a second is
limited by the system clock. In Embedded SQL, a host variable can also be
used in an expression wherever a constant is allowed.

NULL
The NULL value (see "NULL value" on page 263).

SQLCODE
Current SQLCODE value (see "Database Error Messages" on page 357).

85

Expressions

Column names

Variable names

Functions

Subqueries

Operators

86

SQLSTATE
Current SOLSTATE value (see "Database Error Messages" on page 357).

USER

A string containing the user ID of the current connection.

In Embedded SQL, a host variable can also be used in an expression
wherever a constant is allowed.

A column name is an identifier preceded by an optional correlation name. (A
correlation name is usually a table name. See "FROM" on page 243 for more
information on correlation names.) If a column name has characters other
than letters, digits and underscore, it must be surrounded by quotation marks
(""). For example, the following are valid column names:

employee.name

address

"date hired"
"salary"."date paid"

A variable name is as an identifier corresponding to a variable created with
the CREATE VARIABLE command.

See "Functions" on page 71 for a description of the functions available in
Watcom SQL.

A subquery is a SELECT statement enclosed in parentheses. The SELECT
statement must contain one and only one select list item. Usually, the
subquery is allowed to return only one row. See "Conditions" on page 90 for
other uses of subqueries. A subquery can be used anywhere that a column
name can be used. For example, a subquery can be used in the select list of
another SELECT statement.

The normal precedence of operations apply. Expressions in parentheses are
evaluated first; then multiplication and division before addition and
subtraction. String concatenation happens after addition and subtraction.

expression + expression
Addition. If either expression is the NULL value, the result is the NULL
value.

Chapter 7 Data Types, Functions, Expressions, and Conditions

Type conversions

expression - expression
Subtraction. If either expression is the NULL value, the result is the NULL
value.

- expression
Negation. If the expression is the NULL value, the result is the NULL value.

expression * expression
Multiplication. If either expression is the NULL value, the result is the
NULL value.

expression / expression
Division. If either expression is the NULL value or if the second expression
is 0, the result is the NULL value.

expression | | expression
String concatenation (two vertical bars). If either string is the NULL value,
it is treated as the empty string for concatenation.

(expression)
Parentheses.

IF condition THEN expression1 [ELSE expression2] ENDIF
Evaluates to the value of expressionl if the specified search condition is
TRUE, the value of expression2 if condition is FALSE, and the NULL
value if condition is UNKNOWN. (See "NULL value" on page 263 and
"Conditions" on page 90 for more information about TRUE, FALSE and
UNKNOWN conditions.)

Type conversions happen automatically, or they can be explicitly requested
using CAST.

If a string is used in a numeric expression or as an argument to a function
expecting a numeric argument, the string is converted to a number before
use.

If a number is used in a string expression or as a string function argument,
then the number is converted to a string before use.

All date constants are specified as strings. The string will automatically be
converted to a date before use. See "Data types" on page 66.

87

Expressions

Date format

88

There are certain cases where the automatic database conversions are not
appropriate.

r12/31/90" + 5 - Watcom SQL tries to convert the string
to a number

ra’ > 0 - Watcom SQL tries to convert ’‘a’ to a
number

CAST can be used to force type conversions. The cast operation

CAST(expression AS data-type)

forces a conversion of the expression to the named data type. If the length is
omitted for character string types, Watcom SQL chooses an appropriate
length. Similarly, if neither precision nor scale is specified for a DECIMAL
conversion, Watcom SQL selects appropriate values. Examples:

CAST('1992-10-31’ AS DATE) —ensure string is used as a
DATE
CAST(1 + 2 AS CHAR) —Watcom SQL chooses length
CAST(Surname AS CHAR(10)) —useful for shortening
strings

The following functions can also be used to force type conversions (see
"Functions" on page 71).

date(value) Converts the expression into a date, and removes any
hours, minutes or seconds. Conversion errors may be
reported.

string(value) Similar to CAST(value AS CHAR), except that string(
NULL) is the empty string (*”), while CAST(NULL
AS CHAR) is the NULL value.

value+0.0 Equivalent to CAST(value AS DECIMAL).

When converting a string to a date, time or timestamp, Watcom SQL allows
many date formats. The following are all valid dates (depending on the
DATE_ORDER):

92-05-23 21:35

92/5/23

1992/05/23

May 23 1992

23-May-1992

Tuesday May 23, 1992 10:00pm

Chapter 7 Data Types, Functions, Expressions, and Conditions

When a string is converted to a date, parts of the date might not be in the
string. The following defaults are used:

year
This year

month
No default

day
1 (useful for month fields; for example, "May 1992’ will be the date
’1992-05-01 00:00”)

hour, minute, second, fraction
0

For information about specifying the date format, see the discussion of
escape clauses in PowerScript Language. There are many functions dealing
with dates and times (see "Functions" on page 71). In addition to all of the
date and time functions, the following arithmetic operators are allowed on
dates:

timestamp + integer
Add the specified number of days to a date or timestamp.

timestamp - integer
Subtract the specified number of days from a date or timestamp.

date - date
Compute the number of days between two dates or timestamps.

date + time
Create a timestamp combining the given date and time.

89

Conditions

Conditions

Syntax condition:

| expression compare expression

| expression compare ANY (subquery)

| expression compare ALL (subquery)

| expression 1S [NOT] NULL

| expression [NOT] LIKE expression [ESCAPE expression]
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] IN (expression, ...)

| expression [NOT] IN (subquery)

| EXISTS (subquery)

| NOT condition

| condition AND condition

| condition OR condition

| (condition)

| (condition , estimate)

| condition IS [NOT] TRUE

| condition IS [NOT] FALSE

| condition IS [NOT] UNKNOWN

compare: oneof = > < >= <= <> l=~=

Purpose To specify a search condition for a WHERE clause, a HAVING clause, a
CHECK clause, a JOIN clause or an IF expression.

Usage DBA notepad.

Authorization Must be connected to the database.

Side effects None.

See also Expressions.

Description Conditions are used as search conditions to choose a subset of the rows from

a table, or in an IF-THEN-ELSE-ENDIF. The simplest form of a condition
is a comparison of two values:

equal to

<
less than

90

Chapter 7 Data Types, Functions, Expressions, and Conditions

<=
less than or equal to

>
greater than

>=
greater than or equal to

~=

not equal to

<
not equal to (equivalent to ~=)

not equal to (equivalent to ~=)

Case
All string comparisons are case insensitive unless the database was created
as case sensitive.

In SQL, every condition can either be TRUE, FALSE or UNKNOWN. The
result of a comparison is UNKNOWN if either value being compared is the
NULL value. Rows satisfy a search condition if and only if the result of the
condition is TRUE. See "NULL value" on page 263.

SQL provides several other operators for use in conditions. In the following
descriptions, the optional keyword NOT reverses the meaning of the
condition.

expression IS [NOT] NULL
TRUE if the expression is the NULL value, FALSE otherwise.

expr [NOT] BETWEEN start-expr AND end-expr
TRUE if expr is between start-expr and end-expr. This is equivalent to:

expr >= start-expr AND expr <= end-expr

Note that BETWEEN can result in TRUE, FALSE or UNKNOWN.

91

Conditions

92

expression [NOT] IN (value-expr1 [, value-expr2] ...)
TRUE if expression equals any of the listed values, UNKNOWN if
expression is the NULL value and FALSE otherwise.

expression [NOT] LIKE pattern [ESCAPE escape-expr]

TRUE if expression matches the pattern. The pattern may contain any
number of special characters. The special characters are:

¢ _ (underscore) " Matches any character

¢ % (percent) Matches any string of characters including the empty string

All other characters must match exactly. If either expression or pattern is
the NULL value, this condition is UNKNOWN. For example, the search
condition

name LIKE ‘a%b_’

will be TRUE for any row where the name starts with the letter a and has the
letter b as its second last character.

If an escape-expr is specified, it must evaluate to a single character. The
character can precede a percent or an underscore in the pattern to prevent

the special character from having its special meaning. A percent will match a
percent, and an underscore will match an underscore.

Subqueries that return one column and zero or one row can be used in any
SQL statement anywhere that a column name could be used, including in the
middle of an expression. If a subquery returns no rows, its value is
considered to be NULL.

The following are additional conditions that involve subqueries. The result
of each subquery must contain one column.

expression [NOT] IN (subquery)

TRUE if expression equals any of the values in the result of the subquery, or
FALSE if the subquery result does not contain any rows. This condition is
UNKNOWN if expression is the NULL value unless the result of the
subquery has no rows.

EXISTS (subquery)
TRUE if the subquery result contains at least one row, and FALSE if the
subquery result does not contain any rows.

expression > ANY (subquery)
TRUE if expression is greater than any of the values in the result of the

Chapter 7 Data Types, Functions, Expressions, and Conditions

Logical operators

subquery, or FALSE if the subquery result does not contain any rows. Any
comparison operator can be used in place of >. Note that "= ANY" is
equivalent to IN. This condition is UNKNOWN if expression is the NULL
value unless the result of the subquery has no rows, in which case the
condition is always FALSE.

expression > SOME (subquery)
Same as ANY.

expression > ALL (subquery)

TRUE if expression is greater than all of the values in the result of the
subquery or if the result of the subquery does not contain any rows. Any
comparison operator can be used in place of >. Note that "~= ALL" is
equivalent to NOT IN. This condition is UNKNOWN if expression is the
NULL value unless the result of the subquery has no rows, in which case the
condition is always TRUE.

expression > (subquery)

TRUE if expression is greater than the result of the subquery, FALSE
otherwise. The result of the subquery must contain zero or one row. Any
comparison operator can be used in place of >. This condition is
UNKNOWN if the expression is the NULL value, if the subquery result has
no rows, or if the subquery result is the NULL value.

Search conditions can also be used for joining rows from different tables.

Employee.emp lname = ’‘Johnson’ AND Employee.emp_id =
department.emp_id

This will result in combined rows from the Employee and Department tables
where the employee name (emp_lname) is Johnson and the information from
the Department table is selected such that the emp_ID column matches the
emp_ID column in the Employee table. See "FROM" on page 243 for a full
description of joins.

Search conditions can be combined using AND, OR and NOT.

condition1 AND condition2
TRUE if both conditions are TRUE, FALSE if either condition is FALSE,
and UNKNOWN otherwise.

condition1 OR condition2

TRUE if either condition is TRUE, FALSE if both conditions are FALSE,
and UNKNOWN otherwise.

93

Conditions

NOT condition
TRUE if the condition is FALSE, FALSE if condition is TRUE and
UNKNOWN if the condition is UNKNOWN.

condition IS [NOT] truth-value
TRUE if the condition evaluates to the truth-value (TRUE, FALSE, or
UNKNOWN). Otherwise, the value is FALSE.

SOL uses what is known as a three-valued logic. The following figure shows
how the logical operators of SQL work in three-valued logic.

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN
IS TRUE FALSE UNKNOWN
TRUE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE
UNKNOWN FALSE FALSE TRUE

94

Chapter 7 Data Types, Functions, Expressions, and Conditions

Example

When does a row satisfy a condition?

Rows satisfy a condition in a WHERE or HAVING clause if the condition
is TRUE. It is important to remember that rows where the condition is
UNKNOWN are rejected in addition to rows where the condition is
FALSE.

employee.emp lname > ’‘Smith’

age = 20

employee.emp_lname = ’'Johnson’ AND student.age > 18
emp_lname LIKE ’'Br$’

birthdate BETWEEN ‘1966-1-1’ AND ‘1966-6-30"
Employee IN (SELECT level FROM Skill)

95

Conditions

96

CHAPTER 8

SELECT Command Syntax

About this chapter When you define a data source for a report, form, or a PowerBuilder
DataWindow object that accesses a database, you are defining a SELECT
statement (also called a SELECT command, or query).

This chapter describes the syntax of the SELECT statement. Understanding
this statement helps you to construct powerful queries.

Contents ¢ "Building SELECT statements" on page 98
¢ "SELECT" on page 99

97

Building SELECT statements

Building SELECT statements

98

You do not need to know SQL to create a SELECT command. You paint the
SELECT command by making selections in the painters. The application
then uses your selections to build a SELECT command and submit it to
Watcom SQL. Watcom SQL executes the command and retrieves the data
you requested.

Although you do not need to know SQL to create a SELECT command in
PowerBuilder or InfoMaker, you should learn about the SELECT command.
If you understand the SELECT statement, you can make informed selections
in the painters that take full advantage of SELECT command options and
thus create a more powerful query.

This chapter describes syntax of the SELECT command.

In PowerBuilder you can create scripts that contain embedded SQL
commands and you can execute SQL commands immediately in the Database
Administration painter (DBA notepad). The Watcom SQL commands (other
than SELECT) that you can use in embedded SQL and in the Database
Administration painter are described in "Command Syntax" on page 181.

Chapter 8 SELECT Command Syntax

SELECT

Syntax

Purpose

Usage

Authorization
Side effects

See also

SELECT [ALL | DISTINCT] select-list

.[TINTO host-variable-list]
I INTO variable-list |

FROM table-list

[WHERE search-condition]

[GROUP BY column-name, ...]

[HAVING search-condition]

| [ORDER BY expression [ASC|DESC], ...] |
I [ORDER BY integer [ASC IDESC], ...] I

select-list:
| table-name.* l, ...
| expression [AS alias-name] |
l *

To retrieve information from the database.

PowerScript embedded SQL and in the painters.

PowerBuilder and InfoMaker generate the SELECT command automatically
when you use a painter to create a data source that uses a Watcom SQL
database. For more information about data sources, see the PowerBuilder or
InfoMaker User’s Guide or online Help.

The INTO clause with host-variable-list is used in Embedded SQL only.
The INTO clause with variable-list is used in procedures and triggers only.

Must have SELECT permission on the named tables and views.
None.

FROM, Conditions, CREATE VIEW, UNION, Expressions, DECLARE,
OPEN, FETCH.

99

SELECT

Description

100

The SELECT command is used for retrieving results from the database.

A SELECT command can also be used in procedures and triggers or in
Embedded SQL. The SELECT command with an INTO clause is used for
retrieving results from the database when the SELECT statement only returns
one row. For multiple row queries, you must use cursors. (See DECLARE,
OPEN and FETCH .) A SELECT statement can also be used to return a
result set from a procedure (see "Result sets from procedures" on page 170).

The various parts of the SELECT command are described below:

ALL or DISTINCT

If neither ALL nor DISTINCT is specified, ALL rows which satisfy the
clauses of the SELECT command are retrieved. If DISTINCT is specified,
duplicate output rows are eliminated. This is called the projection of the
result of the command. In many cases, commands take significantly longer
to execute when DISTINCT is specified. Thus, the use of DISTINCT should
be reserved for cases where it is necessary.

If DISTINCT is used, the command cannot contain an aggregate function
with a DISTINCT parameter.

select list

The select list is a list of expressions separated by commas specifying what
will be retrieved from the database. If asterisk (*) is specified, it is expanded
to select all columns of all tables in the FROM clause (table-name.* is
expanded to select all columns of the named table). Aggregate functions are
allowed in the select list (see "Functions" on page 71). Subqueries are also
allowed in the select list (see "Expressions" on page 84). Each subquery
must be within parentheses.

Alias-names can be used throughout the query to represent the aliased
expression.

INTO host-variable-list

This clause is used in Embedded SQL only. It specifies where the results of
the SELECT statement will go. There must be one host-variable item for
each item in the select list. Select list items are put into the host variables in
order. An indicator host variable is also allowed with each host-variable so
the program can tell if the select list item was NULL.

INTO variable-list
This clause is used in procedures and triggers only. It specifies where the
results of the SELECT statement will go. There must be one variable for

Chapter 8 SELECT Command Syntax

each item in the select list. Select list items are put into the variables in
order.

FROM table-list

Rows are retrieved from the tables and views specified in the table list.
Joins can be specified using join operators. For a full description see
"FROM" on page 243.

WHERE search-condition

The search-condition restricts the rows that will be selected from the tables
named in the FROM clause. It is also used to do joins between multiple
tables. This is accomplished by putting a condition in the WHERE clause
that relates a column or group of columns from one table with a column or
group of columns from another table. Both tables must be listed in the
FROM clause.

See "Conditions" on page 90 for a full description.

GROUP BY column-name, ...

Group multiple rows together from the database. The result will contain one
row for each distinct set of values in the named columns. The resulting rows
are often referred to as groups since there is one row in the result for each
group of rows from the table list. For the sake of GROUP BY, all NULL
values are treated as identical. Aggregate functions can then be applied to
these groups to get meaningful results.

When GROUP BY is used, the select list, HAVING clause and ORDER BY
clause cannot reference any columns except those named in the GROUP BY
clause.

HAVING search-condition

Restricts which groups will be selected based on the group values and not on
the individual row values. The HAVING clause can only be used if either
the command has a GROUP BY clause or if the select list consists solely of
aggregate functions. Any column names referenced in the HAVING clause
must either be in the GROUP BY clause or be used as a parameter to an
aggregate function in the HAVING clause.

ORDER BY expression, ...

Sort the results of a query. Each item in the ORDER BY list can be labeled
as ASC for ascending order or DESC for descending order. Ascending is
assumed if neither is specified. If the expression is an integer N, then the
query results will be sorted by the N’th item in the select list.

101

SELECT

In embedded SQL, the SELECT command is used for retrieving results from
the database and placing the values into host variables via the INTO clause.
The SELECT statement must return only one row. For multiple row queries,
you must use cursors.

Examples
SELECT * FROM SYS.SYSCATALOG WHERE TNAME LIKE 'SYS%'

SELECT skill.emp ID, max(skill level)
FROM Skill, Employee
WHERE s.Address LIKE ’‘$WATERLOO’
AND s.Birthdate < ’'July 15, 1966°
AND skill.emp ID = Employee.emp_ID
GROUP BY skill.emp_ID
ORDER BY 2 DESC

SELECT count(*) FROM Employee

SELECT emp_ID, (SELECT skill FROM skill
WHERE emp_ID.skill = skill.skill)
FROM Employee

102

CHAPTER 9

Locking and Concurrency

About this chapter Transactions initiated by different connections can overlap. When
transactions overlap, and they involve common data in the database, they can
affect each other. Watcom SQL uses automatic row level locking to prevent
concurrent transactions from interfering with each other.

Contents "Consistency" on page 104

"Isolation levels" on page 105
"Concurrency" on page 107

"Choosing an isolation level" on page 109

"Primary key generation" on page 110

* & & o o o

"Data definition commands" on page 111

103

Consistency

Consistency

104

There are three inconsistencies that can occur during the execution of
concurrent transactions:

Dirty read Transaction A modifies a row. Transaction B then reads that
row before transaction A performs a COMMIT. If transaction A then
performs a ROLLBACK, transaction B will have read a row that was never
committed.

Non-repeatable read Transaction A reads a row. Transaction B then
modifies or deletes the row and performs a COMMIT. If transaction A then
attempts to read the same row again, the row will have changed or been
deleted.

Phantom row Transaction A reads a set of rows that satisfy some
condition. Transaction B then executes an INSERT, or an UPDATE (that
generates one or more rows that satisfy the condition used by transaction A)
and then performs a COMMIT. Transaction A then repeats the initial read
and obtains a different set of rows.

Chapter 9 Locking and Concurrency

Isolation levels

The degree to which the operations in one transaction are visible to the
operations in a concurrent transaction is defined by the isolation level.
Watcom SQL has 4 different isolation levels that will prevent all or some of
the inconsistent behavior.

All isolation levels guarantee that each transaction will execute completely or
not at all, and that no updates will be lost. The isolation levels are different
with respect to dirty reads, nonrepeatable reads, and phantom rows. An X
means that the behavior is prevented, and a ¢/ means that the behavior may

occur.

SQLCA.lock RU |RC |RR | TS
Isolation level 0 1 2 3
Dirty reads v b 4 b 4 b 4
Non-repeatable reads v v 4 X
Phantom rows v v v b 4

The term cursor stability means that any row that is the current position of a
cursor will not be modified until the cursor leaves the row. Watcom SQL
automatically provides cursor stability at isolation levels 1, 2 and 3. (This is
actually inherent in the definition of isolation levels 2 and 3).

Isolation level is a database option that can be different for each user.

Database options are changed by using the SET command. The default
isolation level is 0.

Isolation feature ODBC uses the isolation feature to support assorted
database lock options. In PowerBuilder, you can use the Lock attribute of
the transaction object to set the isolation level when you connect to the
database. The Lock attribute is a string, and is set as follows:

// Set the lock attribute to read uncommitted
// in the default transaction object SQLCA.
SQLCA.lock = "RU"

105

Isolation levels

Types of locks

106

When is Lock honored?

This option is honored only at the moment the CONNECT occurs.
Changes to the Lock attribute after the CONNECT have no effect on the
connection.

Watcom SQL uses automatic row level locking to prevent concurrent
transactions from interfering with each other. The types of locks are
described here to help you understand how locking works. All locks for a
transaction are held until the transaction is complete (COMMIT or
ROLLBACK), with a single exception noted below.

At all isolation levels, write locks are used whenever a transaction inserts,
updates, or deletes a row. When a row is write-locked, no other transaction
can have a lock on the same row (write locks are exclusive).

At isolation level 1, cursor stability is achieved by putting a read lock on the
current row of a cursor. This read lock is removed when the cursor is moved.
This is the only type of lock that does not persist until the end of a
transaction—at isolation levels 2 and 3 all locks are held until the end of a
transaction.

At isolation levels 2 and 3, read locks are used whenever a transaction reads
atow. Several transactions can have read locks on the same row (read locks
are nonexclusive). A transaction cannot acquire a read lock on a row that
already has a write lock by a different transaction. Also, write locks are
prevented on any row that is already read locked.

Phantom locks are read locks that have been acquired by a transaction with
isolation level of 3. They are used to prevent phantom rows.

Chapter 9 Locking and Concurrency

Concurrency

Concurrency is the degree to which many transactions can be active
concurrently. Greater concurrency means improved response time when
several users are accessing the database.

Transaction blocking

Deadlock

Locking is used to prevent concurrent transactions from adversely affecting
each other. When locking conflicts arise, one transaction must wait for
another transaction to complete. A transaction becomes blocked on another
transaction.

There is a database option for changing the behavior when blocking occurs.
When the database option BLOCKING is ON (the default), a transaction will
just wait until the lock can be acquired. When BLOCKING is OFF, the
request that caused the locking conflict will get an error. (See "SET
OPTION" on page 283 for a description of this database option.)

Blocking is more likely to occur with higher isolation levels because more
locking and more checking is done. Higher isolation levels provide less
concurrency.

Lower isolation levels provide a higher degree of concurrency. When all
transactions are running at isolation level 0, the only time a locking conflict
will occur is when one transaction attempts to update or delete a row that has
been inserted or updated by a different transaction and not yet committed.

A deadlock can arise for two different reasons:

A cyclical blocking conflict Transaction A is blocked on transaction B,
and transaction B is blocked on transaction A. Clearly, more time will not
solve the problem. One of the transactions must be canceled. The same
situation can arise with many transactions that are blocked in a cycle.

All active database threads are blocked When a transaction becomes
blocked, its database thread is not relinquished.

107

Concurrency

Watcom SQL will automatically cancel the last transaction that became
blocked (eliminating the deadlock situation), and return an error to that
transaction indicating which form of deadlock occurred.

108

Chapter 9 Locking and Concurrency

Choosing an isolation level

Choose isolation levels that are suitable for your application.

Transactions that involve browsing or performing data entry should use
isolation level 0 or 1. This type of transaction frequently reads a large
number of rows, and lasts several minutes. Concurrency will suffer with
isolation level 2 or 3.

Some applications require serializable transactions due to the nature of the
application. When transactions are serializable, they behave as if they were
run one after another even if they were actually run concurrently. For
example, banking software must prevent two machines from checking a
balance and withdrawing the full amount from the account at the same time.
Transactions of this type will read few or no rows and last at most a few
seconds. Concurrency is not likely to be a problem. Applications that
involve a high volume of small transactions can use isolation level 3 without
sacrificing concurrency.

You can change isolation levels within the transaction. When the Lock
option is changed in the middle of a transaction, the new setting affects
cursors opened after the change and statements executed after the change.
This is useful when there is one table or group of tables that require
serialized access.

109

Primary key generation

Primary key generation

Many applications generate primary key values automatically. For example,
invoice numbers could be obtained by adding 1 to the previous invoice
number. This will not work when there is more than one person adding
invoices to the database. Two people may decide to use the same invoice
number.

110

There is more than one solution to the problem:

L

Use a different range of invoice numbers for each person that adds new
invoices.

This could be done by having a table with two columns (user name and
invoice number). The table would have one row for each user that adds
invoices. Each time a user adds an invoice, the number in the table
would be incremented and used for the new invoice. In order to handle
all tables in the database, the table should have three columns (table
name, user name, and last key value).

Have a table with two columns (table name and last key value).

There would be one row in this table for the last invoice number used.
Each time a user adds an invoice, establish a new connection, increment
the number in the table, and commit. The incremented number can be
used for the new invoice. Other users will be able to grab invoice
numbers because you updated the row with a separate transaction that
only lasted an instant.

Use an AUTOINCREMENT value on the field.

Watcom SQL supports an AUTOINCREMENT default value on fields.
However, this type of field cannot be used by a PowerBuilder data
window for primary key generation, because PowerBuilder is unable to
find the record after insertion. If a table in your database is only added
to from a PowerBuilder script, you may wish to use the
AUTOINCREMENT default value mechanism.

Chapter 9 Locking and Concurrency

Data definition commands

CREATE INDEX, ALTER TABLE, and DROP will be prevented whenever
the command affects a table that is currently being used by another
connection. These commands can be time consuming and the server will not
process requests referencing the same table while the command is being
processed.

CREATE TABLE will not cause any concurrency conflicts.

GRANT, REVOKE, and SET will also not cause concurrency conflicts.
These commands will affect any new SQL statements sent to the database
engine, but will not affect existing outstanding statements.

111

Portable computers

Portable computers

Some of the computers on your network might be portable computers that
people take away from the office or which are occasionally connected to the
network. There may be several database applications that they would like to
use while not connected to the network.

Clearly, they cannot update the database server while they are not connected
to the network. They can, however, take a copy of the database file and
make updates to the copy using the single-user runtime Watcom SQL
database engine running on the portable computer. Later, when they return
to the office, the transaction log can be translated into an ascii SQL
command file (using DBTRAN) and applied to the database server.

Applying updates

There are potential problems with applying translated transaction logs.

When machines are connected to the network, locking prevents conflicting
updates to records in the database. When a user makes changes to a copied
database, there is no such protection. Consider what happens when two users
update the same record, or one user deletes a record that another user
updates. Frequently, you can design applications to avoid this sort of
problem, but you need to be aware of the possibility.

One solution is to use the -v option when starting the database engine on the
portable computer. This will cause the engine to record the previous values
of each of the columns whenever a row of the database is updated. When the
translated transaction log is applied to the database, a warning will be issued
if all of the column values currently in the database do not match the values
recorded in the transaction log. This will indicate that the particular database
row has already been updated by someone else.

Large databases

112

With large database files, it might help to use DBSHRINK to compress the
database before making a copy. In this case you will need to use a write file
with the copied database (see DBWRITE).

You could also use a subset of the large database by creating an extraction
procedure that builds a database that contains only the data needed by one

Chapter 9 Locking and Concurrency

person. As long as the table names and column names are identical, the

translated transaction logs from the smaller database can be applied to the
main database.

113

Portable computers

114

CHAPTER 10

Backup and Recovery

About this chapter This chapter explains how to use the Watcom SQL logs to protect your data,
how to make backup copies of your database files and the Watcom logs, and
the recovery procedures for system and media failures.

Contents "The need for backups" on page 116

"Logs" on page 117

¢

¢

¢ "Backups" on page 120

¢ "Recovery from system failure" on page 122
L4

"Recovery from media failure" on page 123

115

The need for backups

The need for backups

Since even the most dependable computers are at risk of failure, Watcom
SQL has features to protect your data from two categories of failures:
system failure and media failure.

¢ System Failure

Power failure or some other failure causes the machine to go down while
there are partially completed transactions. This could be as simple as
turning off or rebooting the computer.

¢ Media Failure
The database file, the file system, or the device storing the database file

has become unusable.

Recovery from failure When failures occur, the recovery mechanism
must treat transactions as atomic units of work. Any incomplete transaction
must be rolled back and any committed transaction must not be lost.

116

Chapter 10 Backup and Recovery

Logs

Watcom SQL uses three different logs to protect your data from system and
media failure. The checkpoint log, the rollback log, and the transaction log
all play a role in recovery.

Checkpoint log

Reasons

Priority

A Watcom SQL database file is composed of pages. Before a page is
updated (made dirty), a copy of the original is always made. The copied
pages are the checkpoint log.

Dirty pages are not written immediately to the disk. For improved
performance, they are cached in memory and written to disk when the cache
is full or the server has no pending requests. A checkpoint is a point at
which all dirty pages are written to disk. Once all dirty pages are written to
disk, the checkpoint log is deleted.

A checkpoint can occur for several reasons:

¢ The database engine is stopped.

¢ The amount of time since the last checkpoint has exceeded the database
option CHECKPOINT_TIME.

¢ The estimated time to do a recovery operation exceeds the database
option RECOVERY_TIME.

¢ The database engine is idle long enough to write all dirty pages.
¢ A transaction issues a CHECKPOINT command.

¢ The database engine is running without a transaction log and a
transaction is committed.

The priority of writing dirty pages to the disk will increase as the time and
the amount of work since the last checkpoint grows. This will be important
when the database engine does not have enough idle time to write dirty
pages. The database option CHECKPOINT _TIME will control the
maximum desired time between checkpoints. The database option
RECOVERY_TIME will control the maximum desired time for recovery in
the event of system failure. Both times are specified in minutes.

When the database engine is running with multiple databases, the
CHECKPOINT_TIME and RECOVERY_TIME specified by the first

117

Logs

Rollback log

database started will be used, unless overridden by command line switches.
See DBSTART in "Program Summary" for a description of the command
line switches.

As changes are made to the contents of tables, a rollback log is kept for the
purpose of canceling changes. It is used to process ROLLBACK requests,
and is also used for recovering from system failure. There is a separate
rollback log for each transaction. When a transaction is complete, its
rollback log is deleted.

Transaction log

118

Everything the database engine does is stored in the transaction log in the
order that it occurs. Inserts, updates, deletes, commits, rollbacks, and
database structure changes are all logged. The transaction log is frequently
referred to as a forward log file.

The transaction log is optional. When you are running Watcom SQL with no
transaction log, a checkpoint will be done whenever any transaction is
committed. The checkpoint is necessary to ensure that all committed
transactions are written to the disk. Writing dirty pages can be time
consuming, so you should run with a transaction log for improved
performance as well as protection against media failure and corrupted
databases.

The transaction log is not kept in the main database file. The filename of the
transaction log can be set when the database is initialized (with DBINIT), or
at any other time (with DBLOG) when the database engine is not running.
To protect against media failure, the transaction log should be written to a
different device than the database file. Some machines with two or more
hard drives only have one physical disk drive with several logical drives or
partitions. If you want protection against media failure, make sure that you
have a machine with two storage devices or use a storage device on a
network file server. Note that by default, the transaction log is put on the
same device and in the same directory as the database—this does not protect
against media failure.

Chapter 10 Backup and Recovery

Performance hint

Placing the transaction log on a separate device can also result in improved
performance by eliminating the need for disk head movement between the
transaction log and the main database file.

Converting transaction logs to SQL

The transaction log is not human-readable. By converting a transaction log
into a SQL command file, it can serve as an audit trail of changes made to the
database. Here is an example of using DBTRAN to convert a transaction
log:

dbtran sample.log changes.sql

The transaction log contains a record of everything, including transactions
that were never committed. By converting the transaction log to a SQL
command file using DBTRAN with the -a switch, you can recover
transactions that were accidentally canceled by a user. (If -a is not specified,
DBTRAN will omit transactions that were rolled back.) This would not be a
common thing to do, but it can prove useful for exceptional cases.

119

Backups

Backups

Online backup

Offline backup

Full backup

120

Performing a full backup involves making a copy of the database file.
Performing a daily backup involves making a copy of the transaction log.
Both full and daily backups can be carried out online or offline. You can use
any means of backing up the files onto diskette, magnetic tape, optical disk,
or any other device.

Backups can be made without stopping the database engine. The
DBBACKUP utility that comes with Watcom SQL can be run against a
single-user or multiuser database server. See "Program Summary" on page
307 for a full description of the online backup facility.

The database engine should not be running when you do offline backups by
copying database files. Moreover, it should be taken down cleanly.

Before doing a full backup, it is a good idea to verify that the database file is
not corrupt. File system errors, or software errors (bugs) in any software you
are running on your machine could corrupt a small portion of the database
file without you ever knowing. With the database engine running on the
database you wish to check, execute the validation utility that comes with
Watcom SQL.

dbvalid -c dba,sql

The validation utility will scan every record in every table and look each
record up in each index on the table. If the database file is corrupt, you will
need to recover from your previous backup.

A full backup is done offline by copying the database file(s) to the backup
media. To do a backup while the database engine is running, use the
DBBACKUP utility to make a copy of the database file.

dbbackup
You may need to specify connection parameters.

A full backup should be done according to a regular schedule that you follow
carefully. Once every week will work well for most situations.

Chapter 10 Backup and Recovery

Keep several previous full backups. If you were to backup on top of the
previous backup, and you get a media failure in the middle of the backup,
you are left with no backup at all. You should also keep some of your full
backups off-site to protect against fire, flood, earthquake, theft, or vandalism.

If your transaction log tends to grow to an unmanageable size between full
backups, you should consider getting a larger storage device or doing full
backups more frequently.

Daily backup

Daily backups can be done offline by making a copy of the transaction log.

The transaction log will have all changes since the most recent full backup.

Alternatively, you can make a copy of the transaction log online by running
the following command:

dbbackup -t

Daily backups of the transaction log are recommended. This is even more
important if you have the transaction log on the same device as the database
file. If you get a media failure, you could lose both files. By doing daily
backups of the transaction log, you will never lose more than one day of
changes.

Daily backups of the transaction log are also recommended when the
transaction log tends to grow to an unmanageable size between full backups
and you do not want to get a larger storage device or do more frequent full
backups. In this case, you will archive and delete the transaction log.

There is a drawback to deleting the transaction log after a daily backup. If
you have media failure on the database file, there will be several transaction
logs since the last full backup. Each of the transaction logs needs to be
applied in sequence to bring the database up to date (see "Media failure on
the database file" on page 123).

121

Recovery from system failure

Recovery from system failure

122

It is advisable to run the system disk verification program after a power
failure or other system failure. The DOS or NT console command:

chkdsk /f

fixes simple errors in the file system structure that might have been caused
by the system failure. This should be done before running any software,
including Windows if applicable.

After a system error occurs, Watcom SQL will automatically recover when
you restart the database. The results of all transactions that were committed
prior to the system error are intact. All changes by transactions that were not
committed prior to the system failure are canceled.

The database engine will automatically take three steps to recover from a
system failure:

1 Restore all pages to the most recent checkpoint by using the checkpoint
log.

2 Apply any changes that were made between the checkpoint and the
system failure. These changes are in the transaction log.

3 Rollback all uncommitted transactions by using the rollback logs.
There is a separate rollback log for every connection.

Frequent checkpoints will make recovery from system failure take less time,
but they will also create work for the database engine writing out dirty pages.
Step 3 may take a long time if there are long uncommitted transactions that
have already done a great deal of work before the last checkpoint.

The transaction log is optional. When you are running Watcom SQL with no
transaction log, a checkpoint will be done whenever any transaction is
committed. In the event of system failure, the database engine will use steps
1 and 3 from above to recover a database file. Step 2 is not necessary
because there will be no committed transactions since the last checkpoint.
This is, however, usually a slower way to run because of the frequent
checkpoints.

Chapter 10 Backup and Recovery

Recovery from media failure

Recovery from media failure requires you to keep the transaction log on a
separate device from the database file. The information in the two files is
redundant. Regular backups of the database file and the transaction log will
reduce the time required to recover from media failures.

The first step in recovering from a media failure is to clean up, reformat, or
replace the device that failed. Alternately, you could use a different device to
fill in for the failed device.

Media failure on the database file

Situation Your transaction log is still usable but you have lost your
database file.

Solution The solution depends on whether you have one transaction log or
multiple transaction logs.

One transaction log

If you have not deleted or restarted the transaction log since the last full
backup, the transaction log contains everything since the last backup.
Recovery involves four steps:

1 Make a backup of the transaction log immediately. The database file is
gone and the only record of the changes is in the transaction log.
2 Restore the most recent full backup (the database file).

3 Use the database engine to apply the transaction log with the -a
transaction log switch:

db32w wsample.db -a sample.log

The database engine will apply the transaction log to bring the database
up to date.

4 Start the database in the normal way. The database engine will come up
normally and any new activity will be appended to the current
transaction log.

123

Recovery from media failure

If the last full backup was done right after a system failure, and you archived
the transaction log, you will get an error message because the archived
transaction log is required for recovery. Should this happen, you can recover
by using both transaction logs (next section).

Multiple transaction logs

If you have archived and deleted the transaction log since the last full
backup, each transaction log since the full backup needs to be applied in
sequence to bring the database up to date.

1

Make a backup of all transaction logs immediately. The database file is
gone and the only record of the changes is in the transaction logs.

Restore the most recent full backup (the database file).

Starting with the first transaction log after the full backup, apply each
archived transaction log by starting the database engine with the apply
transaction log (-a) switch. For example, the last full backup was on
Sunday and the database file is lost during the day on Thursday.

db32w wsample.db -a mon.log

db32w wsample.db -a tue.log

db32w wsample.db -a wed.log
db32w wsample.db -a sample.log

Watcom SQL will not allow you to apply the transaction logs in the
wrong order or to skip a transaction log in the sequence.

Start the database in the normal way. The database engine will come up
normally and any new activity will be appended to the current
transaction log.

Provided you have backups, you can always recover all transactions that
were committed before the media failure.

Media failure on the transaction log

Situation Your database file is still usable but you have lost your
transaction log.

Solution To recover:

124

Chapter 10 Backup and Recovery

Consequences

1 Make a backup of the database file immediately. The transaction log is
gone and the only record of the changes is in the database file.

2 Restart the database with the -f switch.
db32w wsample.db -f

Without the switch, the database engine will complain about the lack of
a transaction log. With the switch, the database engine will restore the
database to the most recent checkpoint and then rollback any
transactions that were not committed at the time of the checkpoint. A
new transaction log will be created.

Media failure on the transaction log can have more serious consequences
than media failure on the database file. When you lose the transaction log,
all changes since the last checkpoint will be lost. This will be a problem
when you have a system failure and a media failure at the same time (such as
if a power failure causes a head crash that damages the disk). Frequent
checkpoints will minimize the potential for lost data, but they will also create
work for the database engine writing out dirty pages.

For running high volume, or extremely critical applications, you can protect
against media failure on the transaction log by using a special purpose
device, such as a storage device that will mirror the transaction log
automatically.

125

Recovery from media failure

126

CHAPTER 11

Improving Performance

About this chapter One of the most important factors affecting database performance is the set
of indexes defined on your database tables. This chapter describes indexes
and how you can use them to improve performance.,

Contents

*
*
*
*
*
*
L4
*

"Other factors affecting performance" on page 128
"Keys" on page 129

"Indexes" on page 130

"Optimizing joins" on page 131

"Sorting" on page 132

"How the optimizer works" on page 133
"Temporary tables" on page 134

"Using estimates to improve erformance" on page 135
g p p pag

127

Other factors affecting performance

Other factors affecting performance

128

In addition to indexes, other factors can affect performance:

o You are not running with a transaction log (see "Transaction log" on

page 118). A transaction log improves commit time for transactions that
insert, update, or delete rows.

The database engine does not have an adequate amount of memory for
caching database pages. See "Program Summary" on page 307 for
command line options for controlling the cache size. Extra memory for
your computer could improve database performance dramatically.

Your hard disk is excessively fragmented. This becomes more important
as your database increases in size. The database engines cannot do
direct (fast) reading and writing when the database file is very
fragmented.

There are several utilities available for DOS, Windows and Windows
NT to unfragment your hard disk. One of these should be run
periodically. On a computer running DOS, you could put the database
on a DOS disk partition by itself to eliminate fragmentation problems.

The database table design is not good. A bad database design can result
in time-consuming queries to get information from the database. If
indexes will not solve your performance problem, consider alternative
database designs.

Chapter 11 Improving Performance

Keys

Example

Foreign keys and primary keys are used for validation purposes. However,
Watcom SQL also uses these keys to improve performance where possible.

This example illustrates how keys are used to make commands execute
faster:

SELECT * FROM Employee WHERE emp_id = 479

The simplest way for Watcom SQL to perform this command is to look at all
rows in the Employee table and check the Employee ID in each row to see if
it is 479. This does not take long if the table is small, but it will take a long
time for very large tables.

Watcom SQL has a built-in mechanism for quickly finding primary and
foreign key values. So if your table has a primary or foreign key, Watcom
SQL automatically uses the same mechanism to quickly find the employee
ID 479. This quick search takes almost the same amount of time whether
there are a hundred rows or a million rows in the table.

129

Indexes

Indexes

Example

130

Sometimes you need to search for something that is not in a key. Hence,
Watcom SOL cannot use a key to improve performance.

Suppose you wanted to look up all the employees named Houston.

The Employee table is searched using an index called Emp_Names. This has
been created to facilitate searching for employees by their last name. It was
created using the Database painter Create Index window. The user entered
the name of the index Emp_Names and selected the columns (emp_lname
and initials) to be index columns: the SQL statement was generated and
submitted to the DBMS:

CREATE INDEX Emp_Names ON Employee (emp_lname, initials)

The column names emp_lname and initials indicate that those two columns
will be in the index. An index can contain one or more columns. However,
if you create a multiple-column index and then do a search with a condition
using only the second column in the index, the index cannot be used to speed
up the search.

An index is similar to a telephone book which first sorts people by their last
name, and then sorts all the people with the same last name by their first
name. A telephone book is useful if you know the last name, even more
useful if you know both the first name and last name, but worthless if you
know the first name only.

In this example, Watcom SQL was able to use the Emp_Names index to find
a particular last name even though the initials were not specified. However,
you could not use this index if you were looking for the initials F. K.H.
without searching for a particular surname. (You could create an index on
just initials to speed up that search.)

Note also that Watcom SQL chose to use the index automatically. Once an
index is created, Watcom SQL automatically keeps it up to date and uses it to
improve performance whenever it can.

In PowerBuilder and InfoMaker, use the index options in the Database
painter to create and drop an index. PowerBuilder and InfoMaker
automatically generate the required SQL statements and submit them to
Watcom SQL.

For more information about using indexes, see the PowerBuilder or
InfoMaker User’s Guide.

Chapter 11 Improving Performance

Optimizing joins
Assume the Employee and Department tables have been Jjoined using the key
operator. Watcom SQL first examines each row in the Employee table

sequentially, then finds the corresponding department for the current row of
the Employee table using the primary key for the Department table.

If you modify the command to look up employees in the sales department,
Watcom SQL looks in the Department table first, using the foreign key for
the Employee table. Once the dept_id is known, it uses the foreign key for
the Employee table (dept_id) to find all employees in the department.

The interesting thing to note in these two examples is that the tables are
examined in a different order. The first time, the Employee table is
examined first and then the Department table. The second time, the tables
are searched in the opposite order.

When you open more than one table in PowerBuilder or InfoMaker, the
tables are automatically joined on a common column or if there is no
common column, on a logical column. You can use the Join button or the
Join menu option to specify another join. PowerBuilder and InfoMaker
automatically generate the required SQL statements and submit them to
Watcom SQL.

For more information about joins, see the PowerBuilder or InfoMaker User’s
Guide.

131

Sorting

Sorting

132

Most queries against a database will have an ORDER BY clause so that the
rows will come out in a predictable order. Watcom SQL can use indexes to
accomplish the ordering quickly.

To specify a sort order, use the ORDER BY clause. For example, if you use

SELECT * FROM Employee ORDER BY emp_lname

then you can use the index on the emp_lname column to access the rows of
the Employee table in alphabetical order by emp_lname.

A potential performance problem arises when a query has both a WHERE
clause and an ORDER BY clause.
SELECT * FROM Employee

WHERE dept_id = ’200’
ORDER BY state

The database engine must decide between two strategies:

¢ Go through the entire Employee table in order by state checking each
row to see if it is for department 200.

o Use the key on the dept_id column to read only the employees in
department 200. The results would then need to be sorted.

If there are very few employees in department 200, the second strategy is
better because only a few rows are scanned and quickly sorted. If most of
the employees are in department 200, the first strategy is much better because
no sorting is necessary.

This example could be solved by creating a two-column index on state and
department number. (The order of the two columns is important.) The
database engine could then use this index to select rows from the table and
have them in the correct order. Keep in mind that indexes take up space in
the database file and involve some overhead to keep up to date. Do not

create indexes indiscriminately.

In PowerBuilder and InfoMaker, use the Sort options in the painters to sort
rows and then automatically generate the required SQL statements and
submit them to Watcom SQL.

For more information about sorting, see the PowerBuilder or InfoMaker
User’s Guide.

Chapter 11 Improving Performance

How the optimizer works

Self tuning

The database engine has an optimizer that attempts to pick the best strategy
for executing each query. The best strategy is the one that gets the results in
the shortest period of time. The optimizer must decide which order to access
the tables in a query, and whether or not to use an index for each table. The
optimizer uses heuristics (educated guesses) to help decide the best strategy.
The table below shows the simplest guess at the percentage of rows that
some of the comparison operations will select. The other comparison
operations such as LIKE, IS NULL, and EXISTS are handled in a similar
way.

Comparison operation Percentage of rows
= 5

<> 95

<, <=, >, >= 25

between 6

The optimizer also makes use of indexes, unique indexes, and keys to
improve its guess of the number of rows that will be accessed and the number
of I/O operations involved.

One of the most common constraints in a query is equality with a column
value. For example,

SELECT * FROM Employee WHERE Status = ‘a’

tests for equality of the Status column. For this type of constraint, the
Watcom SQL optimizer will learn from its mistakes. A query will not
always be optimized the same way the second time it is executed. The
estimate for an equality constraint will be modified for columns that have an
unusual distribution of values. This information is stored permanently in the
database. If needed, the statistics can be deleted with the DROP
OPTIMIZER STATISTICS command.

133

Temporary tables

Temporary tables

134

Sometimes Watcom SQL needs to make a temporary table for a query.
This occurs in the following cases:

¢ When a query has an ORDER BY or a GROUP BY and Watcom SQL
does not use an index for sorting the rows. Either no index was found,
or the optimizer chose a strategy that did not use the appropriate index
for sorting.

¢ When a multiple row UPDATE is being performed and the column
being updated is used in the WHERE clause of the update or in an index
that is being used for the update.

¢ When a multiple row UPDATE or DELETE has a subquery in the
WHERE clause that references the table being modified.

¢ When an INSERT from a SELECT statement is being performed and the
SELECT statement references the insert table.

In these cases, Watcom SQL makes a temporary table before the operation
begins. The records affected by the operation are put into the temporary
table and a temporary index is built on the temporary table. The operation of
extracting the required records into a temporary table can take a significant
amount of time before any rows at all are retrieved from the query. Thus,
creating indexes that can be used to do the sorting in the first case above will
improve the performance of these queries since it will not be necessary to
build a temporary table.

The INSERT, UPDATE, and DELETE cases above are usually not a
performance problem since it is usually a one-time operation. However, if it
does cause problems, the only thing that can be done to avoid building a
temporary table is to rephrase the command to avoid the conflict. This is not
always possible.

Chapter 11 Improving Performance

Using estimates to improve performance

The Watcom SQL query optimizer uses a heuristic algorithm (educated
guesses) to estimate the number of rows a particular query will return and the
number of I/O operations that will occur. An estimate is derived for each
possible way of performing a particular query. The way that is estimated to
take the fewest I/O operations is chosen to retrieve the rows.

Since the query optimizer is guessing at the number of rows in a result based
on the size of the tables and particular restrictions in the WHERE clause, it
almost always makes inexact guesses. In many cases, the guess that the
query optimizer makes is close enough to the real number of rows that the
optimizer will have chosen the best search strategy. However, in some cases
this does not occur.

For example, suppose you want a list of all employees in department 200
making over $75,000 a year. The query optimizer (with no index on the
column) guesses that a test for greater than will succeed 25 percent of the
time. In this example, the condition on the salary column:

salary >= 75000

is assumed to choose 25 percent of rows in the salary table. If the actual
percentage is closer to, say, 1 percent, the number of rows will be greatly
overestimated, and this may lead to poor performance, as tables may be
searched in an inefficient order.

We can use an estimate to tell the database explicitly what percentage of
Tows we expect to satisfy the condition. An estimate is formed by enclosing
in brackets the expression followed by a comma and a number. The number
represents the percentage of rows that the expression will select. In this case,
we estimate:

(salary >= 75000, 1)

Supplying explicit estimates can improve performance substantially in those
cases where the default estimates lead to poorly optimized queries.

135

Using estimates to improve performance

136

CHAPTER 12

User IDs and Permissions

About this chapter Most databases are used by many different people. Different users of a
database can be given different sets of permissions on various tables in the
database to allow them to carry out their tasks while maintaining the security
of the database.

This chapter describes how new user IDs can be added to Watcom SQL
databases, and how permissions can be managed.

Contents ¢ "Granting and revoking user IDs and permissions" on page 138
¢ "User groups" on page 140

137

Granting and revoking user IDs and permissions

Granting and revoking user IDs and
permissions

Granting new user IDs

Adding new user IDs is the responsibility of the database administrator
(DBA). When first created, all Watcom SQL databases have the single user
ID DBA with password SQL.

To create a new user of the database, you must be connected to the database
as DBA.

Each new user has a user ID and a password. The command to create a new
user ID called new_user and password new_passwd is:

GRANT CONNECT TO new_user IDENTIFIED BY new_passwd

To verify that the new user has been properly created, connect to the
database with the new user ID and password.

Granting permissions on tables

Initially, new users have no permissions to look at tables in the database.
Permissions are given using the GRANT command, which must be issued
from the administrator’s user ID.

For example, you can give new_user permission to use the SELECT
command on the Employee table.

GRANT SELECT ON Employee TO new_user

There are other types of permission you can grant. For example:

GRANT UPDATE ON Employee TO new_user
GRANT DELETE ON Department TO new_user
GRANT INSERT ON Skills TO new_user

These illustrate the various types of permission you can GRANT to other
user IDs. Update permissions can be granted for a subset of the columns in a
table. See "GRANT" on page 249 for the complete syntax of the GRANT
command.

138

Chapter 12 User IDs and Permissions

In addition, you can GRANT more than one type of permission at one time
as follows:

GRANT INSERT, UPDATE ON Employee TO new_user

Finally, you can GRANT permission on a particular table to every user ID by
giving permission to the group user ID PUBLIC. For example:

GRANT SELECT ON Employee TO PUBLIC

Execute permission on procedures

A procedure is owned by the user who created it and that user can execute it

without permission. Permission to execute it can be granted to other users
using the GRANT EXECUTE command.

For example, the creator of a procedure myproc could allow anotheruser to
execute myproc with the statement:

GRANT EXECUTE ON myproc TO anotheruser

You can revoke the permission granted above with the statement:

REVOKE EXECUTE ON myproc FROM anotheruser

DBA and resource authority

By default, new users are not permitted to create tables or procedures. A
user requires resource authority to create tables or procedures. To give a
user resource authority, you must be connected to the database administrator
userid.

GRANT RESOURCE TO new_user

You may want to have more than one user ID with database administrator
authority.

GRANT DBA TO admin

The admin user ID would now have permissions to do anything. (Note that
you would need to be connected to DBA to grant DBA authority.)

139

User groups

User groups

Creating user groups

When there are many users, they will frequently fall into various categories.
It would be cumbersome to grant permissions to each member of a category.
A group is just a user ID that is allowed to have members. A user ID may be
a member of many groups and a group can have many members. You may
connect to a group, and a group can be a member of other groups.

A user group is created by creating the user ID, granting the user ID GROUP
authority, and then granting membership in the group to other users.

Group permissions

Group tables

140

A user ID inherits permissions on tables and procedures that have been
granted to groups in which the user ID has membership. Since the group ID
can be a member of other groups, a user ID can inherit permissions from a
hierarchy of groups. Members of a group do not automatically inherit
permissions on tables and procedures created by the group; the permissions
must be granted explicitly by the group to itself, or by another user. The
special user privileges, DBA, RESOURCE, and GROUP authority, are never
inherited.

If your database is to have many users, we recommend using groups for
controlling permissions for tables and procedures in the database. Never
grant permissions to individual users, just GRANT MEMBERSHIP to groups
that have the appropriate permissions. Later, when the permissions are no
longer needed, you can REVOKE MEMBERSHIP from the group.

Groups are also used for finding tables and procedures in the database. For
example, the query

SELECT * FROM SYSGROUPS

will always find the table SYSGROUPS, because all users belong to the
PUBLIC group and PUBLIC belongs to the SYS group which owns the

Chapter 12 User IDs and Permissions

An example of

SYSGROUPS table. (The SYSGROUPS table contains a list of
group_name, member_name pairs representing the group memberships in
your database.)

user groups

Consider the following example of a corporate database. All the tables are
created by the company user ID. This user ID is used by the database
administrator and is therefore given DBA authority.

GRANT CONNECT TO company IDENTIFIED BY secret;
GRANT DBA TO company;

The tables in the database are created by the company user ID.

CONNECT USER company IDENTIFIED BY secret;

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

company.Customers (...);
company.Products (...
company.Orders ();:
company.Invoices (...);
company.Employees (...);
company.Salaries (...);

e

Not everybody in the company should have access to all information.
Consider two user IDs in the sales department, Joe and Sally, who should
have access to Customers, Products, and Orders. To do this, create a Sales
user group.

GRANT
GRANT

CONNECT TO Sally IDENTIFIED BY XXXXX;
CONNECT TO Joe IDENTIFIED BY XXXXX;

GRANT CONNECT TO Sales IDENTIFIED BY XxXXXX;

GRANT GROUP TO Sales;
GRANT
GRANT
GRANT

ALL ON Customers TO Sales;
ALL ON Orders TO Sales;
SELECT ON Products TO Sales;

GRANT
GRANT

MEMBERSHIP IN GROUP Sales TO Sally;
MEMBERSHIP IN GROUP Sales TO Joe;

Now Joe and Sally have permission to use these tables, but they still have to
qualify their table references:

select * from company.Customers

To rectify the situation, make the Sales user group a member of the Company
group.

141

User groups

142

GRANT GROUP TO Company;
GRANT MEMBERSHIP IN GROUP Company TO Sales;

Now Joe and Sally, being members of the Sales user group, are indirectly
members of the Company user group, and can reference their tables without
qualifiers. The command:

select * from Customers

will now work. Joe and Sally do not have any extra permissions because of
their membership in the Company user group. Company has not been
explicitly granted any table permissions. (The Company user ID has implicit
permission to look at tables like Salaries because it created the tables and has
DBA authority.) Thus, Joe and Sally will still get an error executing either of
these commands:

select * from Salaries
select * from company.Salaries

In either case, Joe and Sally do not have permission to look at the Salaries
table.

CHAPTER 13
Views

About this chapter SQL provides views which allow you to give names to frequently executed
SELECT commands.

This chapter describes how to create views, and indicates some of the uses of
views.

Contents ¢ "Defining a view" on page 144

¢ "Using views for security" on page 146

143

Defining a view

Defining a view

Example

Column names

144

Suppose that you frequently need to list the number of employees in each
department. You can get this list with the following command:
SELECT dept_ID, count(*)

FROM Employee
GROUP BY dept_ID

You can create a view containing the results of this command as follows:

CREATE VIEW DepartmentSize AS
SELECT dept_ID, count(*)

FROM Employee
GROUP BY dept_ID

This command creates a view called DepartmentSize which looks exactly
like any other table in the database.

It is important to remember that the information in a view is not stored
separately in the database. Each time you refer to the view, SQL executes
the associated SELECT command to find the appropriate data. On one hand,
this is good because it means that if someone modifies the Employee table,
the information in the DepartmentSize view will be automatically up to date.
On the other hand, if the SELECT command is complicated it may take a
long time for SQL to find the correct information every time you use the
view.

Default column names in views are often uninformative. For example, the
heading for the column containing the number of employees in each
department will be named expression by default.

You can rename columns in views to make them clear and informative. In
the previous example, you would first get rid of the original view definition
as follows:

DROP VIEW DepartmentSize

You then redefine the view with the new column name as follows:

CREATE VIEW DepartmentSize (Dept_ID, NumEmployees) AS
SELECT dept_ID, count(*)

FROM Employee

GROUP BY dept_ID

You have changed the names of the columns in the view by specifying new
column names in parentheses after the view name.

Chapter 13 Views

Views can be thought of as computed tables. Any SELECT command can be
used in a view definition except commands containing ORDER BY. Views
can use GROUP BY, subqueries, and joins. Disallowing ORDER BY is
consistent with the fact that rows of a table in a relational database are not
stored in any particular order. When you use the view, you can specify an
ORDER BY.

You can also use views in more complicated queries. Here is an example
using a join:
SELECT dept_name, NumEmployees

FROM Department, DepartmentSize
WHERE Department.dept ID = DepartmentSize.dept ID

145

Using views for security

Using views for security

146

Views can be used to restrict access to information in the database. For
example, suppose you wanted to create a user ID for an administrative
worker in a particular department, allowing access only to information about
their own department.

First, you need to create the new user ID using the GRANT command.
(Recall that you need to be connected to the DBA user IDto add a new user.)

The command to create the new user would look like the following:

GRANT CONNECT TO new_user IDENTIFIED BY new_passwd

Next, you need to restrict the new user to be able to look at information about
employees in their own department, which we will identify by department ID
200. For this, you can define a view which only looks at that department as
follows:

CREATE VIEW Dept200 AS

SELECT emp_lname, emp_fname

FROM Employees
WHERE dept_ID = ’200’'

Now you must give the user permission to look at the new view. Enter the
following:
GRANT SELECT ON Dept200 TO new_user

Notice that you use exactly the same type of command to grant permission
for a view as you use to grant permission for a table.

The special tables SYSCATALOG and SYSCOLUMNS are actually views.
The definitions of these views are shown in "Watcom SQL System Views"
on page 445.

CHAPTER 14

Procedures and Triggers

About this chapter Procedures and triggers are features for storing procedural SQL statements in
the database for use by all applications. This chapter describes the use of
procedures and triggers as implemented in the Watcom SQL.

Contents "Overview of procedures and triggers" on page 148
"Advantages" on page 149

"Using procedures" on page 150

"Statements" on page 153

"Warnings in procedures and triggers" on page 161
"Errors in procedures and triggers" on page 162
"Transactions and savepoints" on page 165

"Single row SELECT" on page 166

"Cursors in procedures and triggers" on page 167

® & 6 ¢ ¢ 6 o ¢ ¢ o

"Result sets from procedures" on page 170

147

Overview of procedures and triggers

Overview of procedures and triggers

148

Procedures and triggers are features for storing procedural SQL statements in
the database for use by all applications. Procedures and triggers allow
control statements that allow repetition (LOOP) and conditional execution
(IF and CASE) of SQL statements.

Procedures are invoked with a CALL statement, and use parameters to accept
values and return values to the caller. A procedure can also return result sets
to the caller. A procedure can call other procedures.

Triggers are associated with specific database tables. They are invoked
automatically (fired) whenever rows of the associated table are inserted,
updated or deleted. Triggers do not have parameters and cannot be invoked
by a CALL statement. A trigger can call procedures.

Chapter 14 Procedures and Triggers

Advantages

Standardization

Efficiency

Security

Procedures and triggers are defined in the database, separate from any one
database application. This separation provides a number of advantages.

Most importantly, procedures and triggers allow standardization of any
actions that are performed by more than one application program. The action
is simply coded once and stored in the database. The applications need only
CALL the procedure or fire the trigger to achieve the desired result. If the
implementation of the action evolves over time, any changes are only made
in one place, and all applications that use the action will automatically
acquire the new functionality.

When used in a database implemented on a network server, procedures and
triggers are executed on the database server machine. They can access the
data in the database without involving network communication. This means
that they execute faster and with less impact on network performance than if
they had been implemented in an application on one of the client machines.

When a procedure or trigger is created, it is checked for correct syntax and
then stured in the system tables. The first time it is required by any
application, it is retrieved from the system tables and compiled into the
virtual memory of the database engine, and executed from there. Subsequent
executions of the same procedure or trigger will result in immediate
execution, since the compiled copy is retained. A procedure or trigger can be
used concurrently by several applications and recursively by one application.
Only one copy will be compiled and kept in virtual memory.

Procedures execute with the table permissions of the creator but can be called
by any user that has been granted permission to do so. Triggers execute
under the table permissions of the creator of the associated table but are fired
by any user with permission to insert, update or delete rows in the table. This
means that a procedure or trigger can (and usually does) have different
permissions than the program that invoked it. Procedures and triggers can be
used to provide security by allowing users limited access to data in tables that
they cannot directly examine or modify.

149

Using procedures

Using procedures

In order to use procedures you need to understand how to do the following:
Create procedures
Drop, or remove, procedures

Call procedures from a database application

¢ & o o

Control who has permission to use procedures

This section discusses each of these aspects of using procedures.

Creating procedures

150

Procedures are created using the CREATE PROCEDURE statement. You
must have RESOURCE authority in order to create a procedure

The following example creates a procedure that accepts two integers in
parameters a and b and returns the one that is greater using parameter C.

CREATE PROCEDURE greater(IN a INT, IN b INT, OUT c INT)

BEGIN
IF a > b THEN
SET ¢ = a
ELSE
SET ¢ = b
END IF
END

This statement creates a procedure in the database with the name greater.
See "CREATE PROCEDURE" on page 207 for a complete description of
CREATE PROCEDURE. The body of a procedure consists of a compound
statement (see "Compound statements in procedures and triggers" on page
153). There is no practical limit to the size of a procedure. There are
likewise no limits to the number of parameters that a procedure can have.

Parameter names must conform to the rules for other database identifiers
such as column names. They must be one of the types supported by Watcom
SQL (see "Data types" on page 66), and must be prefixed by one of the
keywords IN, OUT or INOUT. The keywords have the following meanings:

¢ IN argument is an expression that provides a value to the procedure.

¢ OUT argument is a variable that could be given a value by the
procedure.

Chapter 14 Procedures and Triggers

¢ INOUT argument is a variable that provides a value to the procedure,
and could be given a new value by the procedure.

For example, the following procedure changes the value provided in the
parameter to its absolute value. The parameter value provides data to the
procedure and also returns the result.

CREATE PROCEDURE makeabsolute(INOUT value INT)

BEGIN
IF value < 0 THEN
SET value = -value
END IF
END

Dropping a procedure

Once a procedure is created, it remains in the database until it is explicitly
removed. Only the owner of the procedure or a user with DBA authority can
drop the procedure from the database.

To remove the procedure greater from the database, execute the statement:

DROP PROCEDURE greater

Calling procedures

A procedure is invoked with a CALL statement (see "CALL" on page 192).
Procedures can be called by an application program or they can be called by
other procedures and triggers.

Consider the following example:

BEGIN
DECLARE bigger INT;

CALL greater(5, 8, bigger);
END

This shows a CALL to the procedure created in the previous section from
another procedure. It is passing two constants as values for the first two
arguments, and receiving the result in the variable bigger.

151

Using procedures

Permission to execute procedures

A procedure is owned by the user who created it and that user can execute it
without permission. Permission to execute it can be granted to other users
using the GRANT EXECUTE command.

For example, the creator of a procedure myproc could allow anotheruser to
execute myproc with the statement:

GRANT EXECUTE ON myproc TO anotheruser

You can revoke the permission granted above with the statement:

REVOKE EXECUTE ON myproc FROM anotheruser

152

Chapter 14 Procedures and Triggers

Statements

This section describes those statements that can be used in constructing
procedures and triggers.

Compound statements in procedures and triggers

The body of a procedure or trigger is a compound statement. Compound
statements can also be used in control statements within a procedure or
trigger.

A compound statement allows one or more SQL statements to be grouped
together and treated as a unit. A compound statement starts with the
keyword BEGIN and ends with the keyword END. Immediately following
the BEGIN, a compound statement can have local declarations that only exist
within the compound statement. A compound statement can have a local
declaration for a variable, a cursor, a temporary table, or an exception. Local
declarations can be referenced by any statement in that compound statement,
or in any compound statement nested within it. Local declarations are not
visible to other procedures that are called from within a compound statement.

Consider the following example:

CREATE PROCEDURE someproc ()
BEGIN
DECLARE x INT;
DECLARE y INT;

SELECT count(*) INTO x FROM sometable;
SELECT count(*) INTO y FROM anothertable;
BEGIN

DECLARE z INT;

CALL greater(x, y, z);
END;
END

This simple example declares two variables, then uses SELECT statements to
set values for the variables. It then calls greater to determine the greater of
the two counts.

153

Statements

SQL statements in procedures and triggers

The body of a procedure consists of a compound statement. Only certain
SQL statements are allowed within a compound statement.

¢ SELECT, UPDATE, DELETE, INSERT and SET Variable.
¢ Control statements (see "Control statements" on the next page).

¢ Cursor statements (see "Cursors in procedures and triggers" on page
167).

¢ Exception handling statements (see "Errors in procedures and triggers"
on page 162).

COMMIT, ROLLBACK and SAVEPOINT statements are allowed with
certain restrictions (see "Transactions and savepoints" on page 165). All
other statements (CONNECT, GRANT, REVOKE, CREATE, ALTER,
DROP, etc.) are not allowed in procedures and triggers. For further
information, see Usage for each SQL statement in "Command Syntax" on
page 181.

Atomic statements

An atomic statement is a statement that must either execute completely or
not execute at all. For example, an UPDATE statement that updates
thousands of rows might encounter an error after updating many rows. If the
statement does not complete, all changes are undone.

All noncompound SQL statements are atomic. A compound statement can
be made atomic by adding the keyword ATOMIC after the BEGIN keyword.
BEGIN ATOMIC
UPDATE Employee SET emp_ID = 123 WHERE emp_ID = 467;

UPDATE Employee SET birthdate = ’‘baddata’;
END

In this example, the two update statements are part of an atomic compound
statement. They must either succeed or fail as one. The first update
statement will succeed. The second one will cause a data conversion error
since the value being assigned to the column birthdate cannot be converted to
a date.

The result is that the atomic compound statement will fail and the effect of
both UPDATE statements will be undone. Even if the currently executing

154

Chapter 14 Procedures and Triggers

transaction is eventually committed, neither statement in the atomic
compound statement will take effect.

COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT
statements are not permitted within an atomic compound statement (see
"Transactions and savepoints" on page 165).

Control statements

There are a number of control statements for logical flow and decision
making in the body of the procedure or trigger. The following is a list of
control statements available. See "Command Syntax" on page 181 for
complete descriptions.

155

Statements

Control statement

Syntax

Compound statements

Conditional execution

CASE

Repetition

156

BEGIN [ATOMIC]
statement-list
END

IF condition THEN
statement-list

ELSEIF condition THEN
statement-list

ELSE
statement-list

END IF

CASE expression
WHEN value THEN
statement-list
WHEN value THEN
statement-list
ELSE
statement-list
END CASE

WHILE condition LOOP
statement-list
END LOOP

Chapter 14 Procedures and Triggers

Control statement

Syntax

Cursor loop

LEAVE

CALL

FOR
statement-list
END FOR

Leave a labeled loop or
compound statement.

LEAVE label

Invoke a procedure.
CALL procname(arg, ...)

157

Triggers

Triggers

Triggers are used whenever referential integrity and other declarative
constraints (see "Referential integrity" on page 62 and "CREATE TABLE"
on page 209) are not sufficient. You may want to enforce a more complex
form of referential integrity, involving more detailed checking or you may
want to enforce checking on new data but allow legacy data to violate
constraints. Another use for triggers is in logging the activity on database
tables, independent of the applications using the database.

Execution permissions

Triggers execute with the table permissions of the creator of the associated
table. A trigger can modify rows in a table that a user could not modify
directly.

Creating triggers

158

You create triggers using the CREATE TRIGGER statement. You must
have RESOURCE authority in order to create a trigger and you must have
ALTER permissions on the table associated with the trigger.

There are four types of triggers:

¢ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger. _

+ DELETE Invoked whenever a row of the associated table is deleted.

¢ UPDATE Invoked whenever a row of the associated table is updated.

¢ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in the column-list has been modified.

Each type of trigger can be defined to execute BEFORE or AFTER the
insert, update, or delete. The body of a trigger consists of a compound
statement (see "Compound statements in procedures and triggers" on page
153).

If an error occurs while a trigger is executing, the operation that fired the
trigger fails. INSERT, UPDATE, and DELETE are atomic operations (see
"Atomic statements" on page 154). When they fail, all effects of the

Chapter 14 Procedures and Triggers

Insert trigger

Delete trigger

statement (including the effects of triggers and any procedures called by
triggers) are undone.

COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT
statements are not permitted within a trigger (see "Transactions and
savepoints" on page 165).

Consider the following example:

TRIGGER mytrigger AFTER INSERT ON Employee
NEW AS new_employee
FOR EACH ROW
BEGIN
DECLARE err_user_error EXCEPTION FOR SQLSTATE '99999';

IF new_employee.birthdate > ’'June 6, 1994’ THEN
SIGNAL err_user_error

END IF;

END

This example creates a trigger which is fired just after any new row is
inserted into the Employee table. It detects and disallows any new rows that
correspond to birth dates later than June 6, 1994. Notice that the phrase
REFERENCING NEW AS new_employee allows statements in the trigger
code to refer to the data in the new row with the alias new_employee. Notice
also that signaling an error causes the operation that caused the trigger as
well as any previous effects of the trigger to be undone.

You can specify that the trigger fire before the row is inserted by changing
the first line of the example to:

CREATE TRIGGER mytrigger BEFORE INSERT ON Employee

When defining DELETE triggers, use the following CREATE statement:
CREATE TRIGGER mytrigger BEFORE DELETE ON Employee
REFERENCING OLD AS oldrow
FOR EACH ROW
BEGIN

END

This would allow the delete trigger code to refer to the values in the row
being deleted using the alias oldrow.

159

Triggers

Update trigger

When defining UPDATE triggers, use the following CREATE statement:

CREATE TRIGGER mytrigger BEFORE UPDATE ON Employee
REFERENCING NEW AS after_update
OLD AS before_update
FOR EACH ROW
BEGIN

END

This allows the UPDATE trigger code to refer to both the old and new values
of the row being updated. Columns in the new row are referred to with the
alias after_update and columns in the old row are referred to with the alias
before_update.

Dropping a trigger

Once a trigger is created, it remains in the database until it is explicitly
removed. You must have ALTER permissions on the table associated with
the trigger .

To remove the trigger mytrigger from the database, execute the statement:

DROP TRIGGER mytrigger

Executing triggers

160

Triggers are executed automatically whenever an INSERT, UPDATE, or
DELETE operation is performed on the table named in the trigger. Triggers
are fired for each row. The order of operation is as follows:

1 Any before triggers are fired

2 Any referential actions are performed

3 The operation itself is performed

4 Any after triggers are fired

If any of the above steps encounters an error that is not handled within a

procedure or trigger, the preceding steps are undone, the subsequent steps are
not performed, and the operation that fired the trigger fails.

Chapter 14 Procedures and Triggers

Warnings in procedures and triggers

Whenever a SQL statement is executed, a value is placed in a special variable
called SQLSTATE. That value indicates whether or not there were any
unusual conditions encountered while the statement was being performed.

For example, when using cursors, the SQLSTATE variable is used to
indicate if a row has been successfully fetched.

DECLARE err_notfound EXCEPTION FOR SQLSTATE ’02000°;
DECLARE c1 CURSOR FOR SELECT emp_ID, emp_lname FROM Employee;

OPEN c1;
emp:
LOOP
FETCH NEXT cl INTO varl, var2;
IF SQLSTATE = err_notfound THEN
LEAVE emp
END IF;
END LOOP
CLOSE c1

Possible values for the SQLSTATE variable are listed in "Database Error
Messages" on page 357.

161

Errors in procedures and triggers

Errors in procedures and triggers

After an application program executes a SQL statement, it can examine a
return code. This return code indicates that the statement executed
successfully or that it failed and gives the reason for the failure. This same
mechanism is used to indicate the success or failure of a call statement to a
procedure.

Without exception handlers

162

Generally, if a SQL statement in a procedure or trigger fails, the procedure or
trigger terminates execution and control is returned to the application
program with an appropriate setting for the return code. This is true even if
the error occurred in a procedure or trigger that was invoked directly or
indirectly from the first one. In the case of a trigger, the operation causing
the trigger is also undone and the error is returned to the application.

Consider the following example. The application calls the procedure myproc
: and myproc in turn calls the procedure anotherproc, which then encounters
an error.

CREATE PROCEDURE myproc ()
BEGIN

CALL anotherproc();
*
o-*

END
CREATE PROCEDURE anotherproc()
BEGIN
...error encountered
*
. *
END

In the above example, the lines flagged with the asterisk (*) will not be
executed.

The traceback function will provide you with a list of the statements that
were executing when the error occurred. The following command will can
be executed following an error:

SELECT traceback(*) from dummy

Chapter 14 Procedures and Triggers

With exception handlers

It is often desirable to intercept certain types of errors and handle them
within a procedure or trigger in specific ways. This is done through the use
of exception handlers. An exception handler is defined with the
EXCEPTION part of a compound statement (see "Compound statements in
procedures and triggers" on page 153). It is executed whenever an error
occurs in the compound statement. It will also be executed if an error is
encountered in a nested compound statement or in a procedure or trigger that
has been invoked anywhere within the compound statement.

Consider the following example:

CREATE PROCEDURE myproc ()
BEGIN
DECLARE column_not_found EXCEPTION FOR SQLSTATE
'52003";

CALL anotherproc();
*

*
oo

EXCEPTION
WHEN column_not_found THEN
...code to handle the column_not_found error
WHEN OTHERS THEN
RESIGNAL
END

CREATE PROCEDURE anotherproc()
BEGIN

-..column_not_found error encountered
*

END

In the above example, an exception handler is defined in the procedure
myproc.

The DECLARE ... EXCEPTION statement simply declares a symbolic name
for one of the predefined SQLSTATE values associated with error conditions
already known to the database engine.

The EXCEPTION statement declares the exception handler itself. Each
WHEN ... THEN clause specifies an exception name and the statement(s) to
be executed in the event of that exception. The WHEN OTHERS THEN
clause specifies the statement(s) to be executed when the exception that
occurred is not in the preceding WHEN clauses.

163

Errors in procedures and triggers

164

In this example, the statement RESIGNAL simply means that the exception
is to be passed on to a higher-level exception handler. This is the default
action if WHEN OTHERS THEN is not specified in an exception handler.

During execution of the procedure myproc, it calls the second procedure
anotherproc. When the column not found error is encountered, an active
exception is created. Since there is no exception handler declared at the
lower level, the handler declared in the calling procedure is executed to
handle the error. If that exception handler were to finish execution without
resignaling the error (or signaling another error), the compound statement
would be complete and execution would continue with any statements that
followed it. The lines flagged with the asterisk (*) will not be executed.

When an exception is handled in an atomic compound statement, the
compound statement completes without an active exception and the changes
before the exception are not undone.

Chapter 14 Procedures and Triggers

Transactions and savepoints

SQL statements in a procedure or trigger are part of the current transaction
(see "Transactions" on page 55). You can call several procedures within one
transaction or have several transactions in one procedure.

COMMIT and ROLLBACK are not allowed within any atomic statement
(see "Atomic statements" on page 154). Note that triggers are fired due to an
INSERT, UPDATE, or DELETE which are atomic statements. COMMIT
and ROLLBACK are not allowed in a trigger or in any procedures called by
a trigger.

Savepoints (see "Savepoints" on page 58) can be used within a procedure or
trigger, but a ROLLBACK TO SAVEPOINT statement can never refer to a

savepoint before the atomic operation started. Also, all savepoints within an
atomic operation are released when the atomic operation completes.

165

Single row SELECT

Single row SELECT

Single row queries retrieve at most one row from the database. This type of
query is achieved by a SELECT statement with an INTO clause. The INTO
clause follows the select list and precedes the FROM clause. It contains a list
of variables to receive the value for each select list item. There must be the
same number of variables as there are select list items.

When a SELECT statement is executed, the database engine retrieves the
results of the SELECT statement and places the results in the variables. If
the query results contain more than one row, the database engine will return
an error. In this case, cursors must be used (see next section). If the query
results in no rows being selected, a row not found warning is returned.

166

Chapter 14 Procedures and Triggers

Cursors in procedures and triggers

A cursor is used to retrieve rows one at a time from a query that has multiple
rows in the result set. A cursor is a handle or an identifier for the SQL query
and a position within the results. Managing a cursor is similar to managing

files in a programming language. The following steps are used to manage
Cursors:

1 A cursor is declared for a particular SELECT statement using the
DECLARE statement.

2 The cursor is opened using the OPEN statement.

3 The FETCH statement is used to retrieve results one row at a time from
the cursor.

4 Usually records are fetched until the row not found warning is
returned. The cursor is then closed using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on
COMMIT or ROLLBACK). Cursors that are opened with a WITH HOLD
clause will be kept open for subsequent transactions until they are explicitly
closed. The following is a simple example:

DECLARE err_notfound EXCEPTION FOR SQLSTATE '02000";
DECLARE cl CURSOR FOR SELECT emp_ID, emp lname FROM Employee;

OPEN c1;
emp:
LOooP
FETCH NEXT cl INTO varl, var2;
IF SQLSTATE = err notfound THEN
LEAVE emp
END IF;

END L0OP
CLOSE c1
Cursor positioning
A cursor is positioned in one of three places:

¢ Onarow
¢ Before the first row
¢ After the last row

This is illustrated below:

167

Cursors in procedures and triggers

168

Absolute Absolute
row from row from
start end

0 -n-1

1 -n

2 -n+l

3

4

n+l

When a cursor is opened, it is positioned before the first row. The cursor
position can be moved using the FETCH command (see "FETCH" on page
238). It can be positioned to an absolute position either from the start or
from the end of the query results. It can also be moved relative to the current
cursor position.

There are special positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, a no current row of cursor error will be returned.

Chapter 14 Procedures and Triggers

Cursor positioning problems

Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database engine will not put
inserted rows at a predictable position within a cursor unless there is an
ORDER BY clause on the SELECT statement. In some cases, the inserted
row will not appear at all until the cursor is closed and opened again. With
Watcom SQL, this occurs if a temporary table had to be created to open the
cursor (see "Temporary tables" on page 134 for a description). The
UPDATE statement may cause a row to move in the cursor. This will
happen if the cursor has an ORDER BY that uses an existing index (a
temporary table is not created).

169

Result sets from procedures

Result sets from procedures

170

If a procedure needs to return values to the calling program oOr procedure, it
can use OUT or INOUT parameters. If a procedure needs to return multiple
rows, it can use result sets.

Consider the following example:

DECLARE err notfound EXCEPTION FOR SQLSTATE 102000 ;
DECLARE cl CURSOR FOR CALL emp_active();

OPEN cl;
emp:
LOOP
FETCH NEXT cl into varl, var2;
IF SQLSTATE = err_notfound THEN
LEAVE emp
END IF;

END LOOP;
RESUME cl;
CLOSE cl;

CREATE PROCEDURE emp_active()
RESULT (emp_ID CHAR(10), emp_lname CHAR(20))
BEGIN
SELECT emp_ID, emp_lname FROM Employee WHERE
Status = ‘a’;
END

In the above example, the application code declares and opens a cursor on a
CALL to the procedure emp_active. Thisis analogous to the more common
technique of opening a cursor on a SELECT statement.

¢ The OPEN statement in the caller causes the procedure emp_active to
begin executing.

¢ When the SELECT statement in the procedure is executed, the procedure
is suspended and control returns to the statement after the OPEN.

¢ The result set of the SELECT is processed by the FETCH statements in
the caller.

¢ When the caller has finished with the result set, it exits its loop and
executes the RESUME statement.

¢ The procedure emp_active resumes execution at the statement after the
SELECT. When it completes, control returns to the caller at the
statement after the RESUME.

¢ The CLOSE statement closes the cursor.

Chapter 14 Procedures and Triggers

If no RESUME statement was executed by the caller, the CLOSE statement
would terminate the procedure without completing execution of the
procedure.

The procedure emp_active has a RESULT set with two columns emp_ID and
emp_lname:eosname.. A SELECT statement within a procedure must have
select-list items that correspond to the RESULT clause of the procedure.
Appropriate type conversions will be performed automatically.

Multiple result sets

It is possible for a procedure to return more than one result set to the calling
program. Consider the following example:

DECLARE err_notfound EXCEPTION FOR SQLSTATE 102000 ;
DECLARE c1 CURSOR FOR CALL people();

OPEN c1;
WHILE(SQLSTATE = ‘00000’) Loop
emp:
LOOP
FETCH NEXT cl INTO varl, var2
IF SQLSTATE = err notfound THEN
LEAVE emp
END IF;
END LOOP;
RESUME c1;
END LOOP;
CLOSE c1;

CREATE PROCEDURE people()
RESULT (lname CHAR(20), address CHAR(40))
BEGIN
SELECT emp_lname, emp address FROM Employee;
SELECT head_lname, head_address FROM Department;
END

As in the previous example, this application program declares and opens a
cursor on the CALL statement.

The WHILE ... LOOP executes once for each SELECT statement in people.
The nested LOOP fetches rows from each result set.

171

Result sets from procedures

172

CHAPTER 15

Database Collations

About this chapter With Watcom SQL, you can customize sorting orders according to different
collations. Each collation corresponds to a different character set, so that

sorting operations will produce the proper results for the native language of
the database.

This chapter documents the built-in collations provided with Watcom SQL.

Contents ¢ "Collations" on page 174
¢ "Countries, languages, and code pages" on page 175

¢ "Form of the custom collation file" on page 177

173

Collations

Collations

174

With Version 3.2, Watcom SQL introduced customizable sorting and
comparison order (collation sequences). Built-in collation sequences support
many single-byte character sets for various country/language/code-page
combinations. Customizable collation sequences allow the user to specify a
custom collation sequence to be used by the database in sorting and
comparison operations.

Note that the sorting capabilities of the database assume a single-byte, one
pass, sorting algorithm. It is not currently possible to sort ligatures
(single-byte characters containing two language characters or their
equivalent) as two characters, or to subsort within a set of similar characters
(such as accented letters).

If no collation is specified when a new database is created, the default
collation will be used, which is normal ASCII (binary) ordering for the first
128 characters (hex 00 to 7F). The upper 128 (extended) characters are
assumed to be from code page 850 (multinational). Characters that are
accented forms of ASCII letters are sorted into the same position as the
ASCII letters. Other characters will sort to their binary positions.

Chapter 15 Database Collations

Countries, languages, and code pages

The best collation to use varies depending primarily on the language of the
user and the code pages available in the user’s machine. This will, of course,
vary from one country or region to another.

The following table shows the built-in collations provided with Watcom
SQL. The table and the corresponding collations were derived from several
manuals from IBM concerning National Language Support, subject to the
restrictions mentioned above. (At the time of this writing, this table
represents the best information that was available. Due to recent, rapid
geopolitical changes, the table may contain names for countries that no
longer exist.)

Primary Secondary
Country Language Code | Primary Code Secondary

Page | Collation Page Collation
Argentina Spanish 850 850ESP 437 437ESP
Australia English 437 437LATIN1| 850 850LATIN{
Austria German 850 850LATIN1(437 437LATIN1
Belgium Belgian Dutch | 850 850LATIN1 (437 437LATIN1
Belgium Belgian French |850 850LATIN1 (437 437LATIN1
Belorus Belorussian 855 855CYR
Brazil Portuguese 850 850LATIN1(437 437LATIN1
Bulgaria Bulgarian 855 855CYR (850 850CYR
Canada Canada French |850 850LATIN1(863 863LATIN1
Canada English 437 437LATIN1(850 850LATIN1
Czechoslovakia | Czech 852 852LATIN2| 850 850LATIN2
Czechoslovakia | Slovakian 852 852LATIN2| 850 850LATIN2
Denmark Danish 850 850DAN
Finland Finnish 850 850SVE (437 437SVE
France French 850 850LATIN1(437 437LATIN1
Germany German 850 850LATIN1| 437 437LATIN1
Greece Greek 869 869ELL 850 850ELL
Hungary Hungarian 852 852LATIN2(850 850LATIN2
Iceland Icelandic 850 850ISL 861 861ISL
Ireland English 850 850LATIN1(437 437LATIN1
Israel Hebrew 862 862HEB | 856 856HEB
Italy Italian 850 850LATIN1(437 437LATIN1
Mexico Spanish 850 850ESP (437 437ESP
Netherlands Dutch 850 850LATIN1(437 437LATIN1

175

Countries, languages, and code pages

176

New Zealand
Norway
Peru
Poland
Portugal
Romania
Russia

S. Africa
S. Africa
Spain
Sweden
Sweden
Sweden
Switzerland
Switzerland
Switzerland
Turkey

UK

USA
Venezuela
Yugoslavia
Yugoslavia
Yugoslavia
Yugoslavia
Yugoslavia

English
Norwegian
Spanish
Polish
Portuguese
Romanian
Russian
Afrikaans
English
Spanish
French
Italian
Swedish
French
German
Italian
Turkish
English
English
Spanish
Croatian
Macedonian
Serbian Cyrillic
Serbian Latin
Slovenian

437 437LATIN1
865 865NOR
850 850ESP
852 852LATIN2
850 850LATIN1
852 852LATIN2
866 866RUS
437 437LATIN1
437 437LATIN1
850 850ESP
850 850SVE
850 850SVE
850 850SVE
850 850LATIN1
850 850LATIN1
850 850LATIN1
857 857TRK
850 850LATIN1
437 437LATIN1
850 850ESP
852 852LATIN2
852 852LATIN2
855 855CYR
852 852LATIN2
852 852LATIN2

850

850LATINT
850NOR
437ESP
850LATIN2
860LATIN1
850LATIN2
850RUS
850LATIN1
850LATIN1
437ESP
437SVE
437SVE
437SVE
437LATIN1
437LATINA
437LATIN1
850TRK
437LATIN1
850LATINT
437ESP
850LATIN2
850LATIN2
852CYR
850LATIN2
850LATIN2

A user creating a new database should find the line with the

country/language that they wish to use, then pick either the primary or

secondary collation,
computer. (The DOS chep co
number.) If their particular com
a satisfactory combination may b

required.

depending on which code page is in use in their

mmand will display the current code page

bination is not present, then another line with
¢ used, or a custom collation may be

Chapter 15 Database Collations

Form of the custom collation file

It is recommended that DBCOLLAT be used to extract a collation from an
existing database. SAMPLE.DB may be used, if necessary. A collation
should be chosen which is likely to be as close as possible to the wanted
collation. The collation may then be edited and specified as input to DBINIT
(using the -z switch), creating a new database that will use the specified
collation.

In the collation file, spaces are generally ignored. Comment lines start with
either a % or a --. The first noncomment line must look like this:

Collation label (name)

where:
Parameter | Description
Collation is a keyword and is required
label is the collation_label
name is a descriptive term for documentation purposes.

Label will appear in SYS.SYSCOLLATION.collation_label and
SYS.SYSINFO.default_collation, and should be no more than 10 characters,
It should not be the same as one of the built-in collations (in particular, the
collation label should not be left unchanged.) Name should be no more than
128 characters.

After the "Collation" line, each noncomment line describes one position in
the collation. The ordering of the lines determines the sort ordering used by
the database, and also determines the result of comparisons. Characters on
lines appearing higher in the file (closer to the beginning) will sort before
characters that appear later.

The general form of each line in the file is:
[sort-position] : character
or
[sort-position] : character [lowercase uppercase]

where:

sort-position is optional and specifies the position at which the characters
on that line will sort. Smaller numbers represent a lesser value, so will sort

177

Form of the custom collation file

178

closer to the beginning of the sorted item. Typically, the sort-position is
omitted, and the characters will sort immediately following the characters
from the previous sort position.

character is the character whose sort-position is being specified.

lowercase is optional and specifies the lowercase equivalent of the
character. If not specified, then the character has no lowercase equivalent.

uppercase is optional and specifies the uppercase equivalent of the
character. If not specified, then the character has no uppercase equivalent.

Multiple characters may appear on one line, separated by commas (;)- In this
case, these characters will be sorted and compared as if they were the same
character.

Each character and sort-position is specified in one of the following ways:

\dnnn Decimal number, using digits 0-9 (such as \d001)

\xhh Hexadecimal number, using 2 digits 0-9 and/or letters a-f
or A-F (such as \xB4)

’c’ Any character in place of c (suchas’,’)

c Any character other than quote (), back-slash (\), colon (%)

or comma (,). These must use one of the previous forms.

The following are some sample lines for a collation:

Chapter 15 Database Collations

% Sort some letters in alphabetical order
: A aaA
A
B
B

Twoe
o Uoo

% Sort some E’s from code page 850,
% including some accented extended characters:
¢ e eE, \x82 \x82 \x90, \x8A \x8a \xD4
E e E, \x90 \x82 \x90, \xD4 \x8A \xD4
% Sort some special characters at the end:

oy

\xF2
\XEE
\XF0

For databases using case-insensitive sorting and comparing (no -c specified
on the DBINIT command line), the lowercase and uppercase mappings are

used to find the lowercase and uppercase characters that will be sorted
together.

Any characters omitted from the collation will be added to the collation at the
position equal to their binary value. DBINIT will issue a message for each

omitted character. However, it is recommended that any collation contain all
256 characters.

179

Form of the custom collation file

180

CHAPTER

16

Command Syntax

About this chapter

Contents

This chapter presents detailed descriptions of all Watcom SQL commands
that are available through PowerBuilder except SELECT, which is discussed
in "SELECT" on page 99.

Some commands (OPEN, CLOSE, FETCH, etc.) are also PowerScript
embedded SQL commands. Refer to PowerScript Language for a
description of how to use these commands in PowerBuilder. The description
that is included in the following sections refers to the use of these commands
in procedures and triggers.

Each command begins on a new page. The discussion begins with a
summary of the syntax, followed by the purpose, usage, authorization, side
effects, other related commands and a detaile<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>